2023-07-04 11:57:30 +08:00
|
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
|
|
|
|
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
2023-07-04 20:57:14 +08:00
|
|
|
from trainer import PrefixTrainer
|
2023-07-04 11:57:30 +08:00
|
|
|
from transformers.trainer_utils import PredictionOutput
|
|
|
|
from transformers.utils import logging
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
2023-07-04 20:57:14 +08:00
|
|
|
class Seq2SeqTrainer(PrefixTrainer):
|
2023-07-04 11:57:30 +08:00
|
|
|
def evaluate(
|
|
|
|
self,
|
|
|
|
eval_dataset: Optional[Dataset] = None,
|
|
|
|
ignore_keys: Optional[List[str]] = None,
|
|
|
|
metric_key_prefix: str = "eval",
|
|
|
|
**gen_kwargs
|
|
|
|
) -> Dict[str, float]:
|
|
|
|
"""
|
|
|
|
Run evaluation and returns metrics.
|
|
|
|
|
|
|
|
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
|
|
|
|
(pass it to the init `compute_metrics` argument).
|
|
|
|
|
|
|
|
You can also subclass and override this method to inject custom behavior.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
eval_dataset (`Dataset`, *optional*):
|
|
|
|
Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns
|
|
|
|
not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
|
|
|
|
method.
|
|
|
|
ignore_keys (`List[str]`, *optional*):
|
|
|
|
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
|
|
|
gathering predictions.
|
|
|
|
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
|
|
|
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
|
|
|
"eval_bleu" if the prefix is `"eval"` (default)
|
|
|
|
max_length (`int`, *optional*):
|
|
|
|
The maximum target length to use when predicting with the generate method.
|
|
|
|
num_beams (`int`, *optional*):
|
|
|
|
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
|
|
|
beam search.
|
|
|
|
gen_kwargs:
|
|
|
|
Additional `generate` specific kwargs.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
|
|
|
|
dictionary also contains the epoch number which comes from the training state.
|
|
|
|
"""
|
|
|
|
|
|
|
|
gen_kwargs = gen_kwargs.copy()
|
|
|
|
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
|
|
|
gen_kwargs["max_length"] = self.args.generation_max_length
|
|
|
|
gen_kwargs["num_beams"] = (
|
|
|
|
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
|
|
|
)
|
|
|
|
self._gen_kwargs = gen_kwargs
|
|
|
|
|
|
|
|
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
|
|
|
|
|
|
|
def predict(
|
|
|
|
self,
|
|
|
|
test_dataset: Dataset,
|
|
|
|
ignore_keys: Optional[List[str]] = None,
|
|
|
|
metric_key_prefix: str = "test",
|
|
|
|
**gen_kwargs
|
|
|
|
) -> PredictionOutput:
|
|
|
|
"""
|
|
|
|
Run prediction and returns predictions and potential metrics.
|
|
|
|
|
|
|
|
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
|
|
|
|
will also return metrics, like in `evaluate()`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
test_dataset (`Dataset`):
|
|
|
|
Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the
|
|
|
|
`model.forward()` method are automatically removed. Has to implement the method `__len__`
|
|
|
|
ignore_keys (`List[str]`, *optional*):
|
|
|
|
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
|
|
|
|
gathering predictions.
|
|
|
|
metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
|
|
|
|
An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
|
|
|
|
"eval_bleu" if the prefix is `"eval"` (default)
|
|
|
|
max_length (`int`, *optional*):
|
|
|
|
The maximum target length to use when predicting with the generate method.
|
|
|
|
num_beams (`int`, *optional*):
|
|
|
|
Number of beams for beam search that will be used when predicting with the generate method. 1 means no
|
|
|
|
beam search.
|
|
|
|
gen_kwargs:
|
|
|
|
Additional `generate` specific kwargs.
|
|
|
|
|
|
|
|
<Tip>
|
|
|
|
|
|
|
|
If your predictions or labels have different sequence lengths (for instance because you're doing dynamic
|
|
|
|
padding in a token classification task) the predictions will be padded (on the right) to allow for
|
|
|
|
concatenation into one array. The padding index is -100.
|
|
|
|
|
|
|
|
</Tip>
|
|
|
|
|
|
|
|
Returns: *NamedTuple* A namedtuple with the following keys:
|
|
|
|
|
|
|
|
- predictions (`np.ndarray`): The predictions on `test_dataset`.
|
|
|
|
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
|
|
|
|
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
|
|
|
|
labels).
|
|
|
|
"""
|
|
|
|
|
|
|
|
gen_kwargs = gen_kwargs.copy()
|
|
|
|
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
|
|
|
gen_kwargs["max_length"] = self.args.generation_max_length
|
|
|
|
gen_kwargs["num_beams"] = (
|
|
|
|
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
|
|
|
|
)
|
|
|
|
self._gen_kwargs = gen_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
|
|
|
|
|
|
|
|
def prediction_step(
|
|
|
|
self,
|
|
|
|
model: nn.Module,
|
|
|
|
inputs: Dict[str, Union[torch.Tensor, Any]],
|
|
|
|
prediction_loss_only: bool,
|
|
|
|
ignore_keys: Optional[List[str]] = None,
|
|
|
|
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
|
|
"""
|
|
|
|
Perform an evaluation step on `model` using `inputs`.
|
|
|
|
|
|
|
|
Subclass and override to inject custom behavior.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (`nn.Module`):
|
|
|
|
The model to evaluate.
|
|
|
|
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
|
|
|
The inputs and targets of the model.
|
|
|
|
|
|
|
|
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
|
|
|
argument `labels`. Check your model's documentation for all accepted arguments.
|
|
|
|
prediction_loss_only (`bool`):
|
|
|
|
Whether or not to return the loss only.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
|
|
|
|
labels (each being optional).
|
|
|
|
"""
|
|
|
|
|
|
|
|
if not self.args.predict_with_generate or prediction_loss_only:
|
|
|
|
return super().prediction_step(
|
|
|
|
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
|
|
|
)
|
|
|
|
|
|
|
|
has_labels = "labels" in inputs
|
|
|
|
inputs = self._prepare_inputs(inputs)
|
|
|
|
|
|
|
|
# XXX: adapt synced_gpus for fairscale as well
|
|
|
|
gen_kwargs = self._gen_kwargs.copy()
|
|
|
|
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
|
|
|
gen_kwargs["max_length"] = self.model.config.max_length
|
|
|
|
gen_kwargs["num_beams"] = (
|
|
|
|
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
|
|
|
|
)
|
|
|
|
default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
|
|
|
|
gen_kwargs["synced_gpus"] = (
|
|
|
|
gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
|
|
|
|
)
|
|
|
|
|
|
|
|
if "attention_mask" in inputs:
|
|
|
|
gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
|
|
|
|
if "position_ids" in inputs:
|
|
|
|
gen_kwargs["position_ids"] = inputs.get("position_ids", None)
|
|
|
|
if "global_attention_mask" in inputs:
|
|
|
|
gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
|
|
|
|
|
|
|
|
# prepare generation inputs
|
|
|
|
# some encoder-decoder models can have varying encoder's and thus
|
|
|
|
# varying model input names
|
|
|
|
if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name:
|
|
|
|
generation_inputs = inputs[self.model.encoder.main_input_name]
|
|
|
|
else:
|
|
|
|
generation_inputs = inputs[self.model.main_input_name]
|
|
|
|
|
|
|
|
gen_kwargs["input_ids"] = generation_inputs
|
|
|
|
generated_tokens = self.model.generate(**gen_kwargs)
|
|
|
|
generated_tokens = generated_tokens[:, generation_inputs.size()[-1]:]
|
|
|
|
|
|
|
|
# in case the batch is shorter than max length, the output should be padded
|
|
|
|
if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
|
|
|
|
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
|
|
|
|
elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
|
|
|
|
gen_kwargs["max_new_tokens"] + 1
|
|
|
|
):
|
|
|
|
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
|
|
|
|
|
|
|
|
loss = None
|
|
|
|
|
|
|
|
if self.args.prediction_loss_only:
|
|
|
|
return (loss, None, None)
|
|
|
|
|
|
|
|
if has_labels:
|
|
|
|
labels = inputs["labels"]
|
|
|
|
if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
|
|
|
|
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
|
|
|
|
elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
|
|
|
|
gen_kwargs["max_new_tokens"] + 1
|
|
|
|
):
|
|
|
|
labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
|
|
|
|
else:
|
|
|
|
labels = None
|
|
|
|
|
|
|
|
return (loss, generated_tokens, labels)
|
|
|
|
|
|
|
|
def _pad_tensors_to_max_len(self, tensor, max_length):
|
|
|
|
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
|
|
|
|
# If PAD token is not defined at least EOS token has to be defined
|
|
|
|
pad_token_id = (
|
|
|
|
self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
if self.model.config.pad_token_id is not None:
|
|
|
|
pad_token_id = self.model.config.pad_token_id
|
|
|
|
else:
|
|
|
|
raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
|
|
|
|
|
|
|
|
padded_tensor = pad_token_id * torch.ones(
|
|
|
|
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
|
|
|
|
)
|
|
|
|
padded_tensor[:, : tensor.shape[-1]] = tensor
|
|
|
|
return padded_tensor
|