2023-06-25 23:32:27 +08:00
|
|
|
# coding=utf-8
|
|
|
|
# Implements API for ChatGLM2-6B in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
|
2023-06-26 18:13:21 +08:00
|
|
|
# Usage: python api_demo.py
|
2023-06-25 23:32:27 +08:00
|
|
|
# Visit http://localhost:8000/docs for documents.
|
|
|
|
|
|
|
|
|
|
|
|
import time
|
|
|
|
import torch
|
|
|
|
import uvicorn
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from fastapi import FastAPI, HTTPException
|
|
|
|
from contextlib import asynccontextmanager
|
|
|
|
from starlette.responses import StreamingResponse
|
|
|
|
from typing import Any, Dict, List, Literal, Optional, Union
|
|
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
|
|
|
|
|
|
@asynccontextmanager
|
|
|
|
async def lifespan(app: FastAPI): # collects GPU memory
|
|
|
|
yield
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.ipc_collect()
|
|
|
|
|
|
|
|
|
|
|
|
app = FastAPI(lifespan=lifespan)
|
|
|
|
|
|
|
|
|
2023-06-26 18:13:21 +08:00
|
|
|
class ModelCard(BaseModel):
|
|
|
|
id: str
|
|
|
|
object: str = "model"
|
|
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
|
|
owned_by: str = "owner"
|
|
|
|
root: Optional[str] = None
|
|
|
|
parent: Optional[str] = None
|
|
|
|
permission: Optional[list] = None
|
|
|
|
|
|
|
|
|
|
|
|
class ModelList(BaseModel):
|
|
|
|
object: str = "list"
|
|
|
|
data: List[ModelCard] = []
|
|
|
|
|
|
|
|
|
2023-06-25 23:32:27 +08:00
|
|
|
class ChatMessage(BaseModel):
|
|
|
|
role: Literal["user", "assistant", "system"]
|
|
|
|
content: str
|
|
|
|
|
|
|
|
|
|
|
|
class DeltaMessage(BaseModel):
|
|
|
|
role: Optional[Literal["user", "assistant", "system"]] = None
|
|
|
|
content: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
class ChatCompletionRequest(BaseModel):
|
|
|
|
model: str
|
|
|
|
messages: List[ChatMessage]
|
|
|
|
temperature: Optional[float] = None
|
|
|
|
top_p: Optional[float] = None
|
|
|
|
max_length: Optional[int] = None
|
|
|
|
stream: Optional[bool] = False
|
|
|
|
|
|
|
|
|
|
|
|
class ChatCompletionResponseChoice(BaseModel):
|
|
|
|
index: int
|
|
|
|
message: ChatMessage
|
|
|
|
finish_reason: Literal["stop", "length"]
|
|
|
|
|
|
|
|
|
|
|
|
class ChatCompletionResponseStreamChoice(BaseModel):
|
|
|
|
index: int
|
|
|
|
delta: DeltaMessage
|
|
|
|
finish_reason: Optional[Literal["stop", "length"]]
|
|
|
|
|
|
|
|
|
|
|
|
class ChatCompletionResponse(BaseModel):
|
|
|
|
model: str
|
|
|
|
object: Literal["chat.completion", "chat.completion.chunk"]
|
|
|
|
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
|
|
|
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
|
|
|
|
|
|
|
|
2023-06-26 18:13:21 +08:00
|
|
|
@app.get("/v1/models", response_model=ModelList)
|
|
|
|
async def list_models():
|
|
|
|
global model_args
|
|
|
|
model_card = ModelCard(id="gpt-3.5-turbo")
|
|
|
|
return ModelList(data=[model_card])
|
|
|
|
|
|
|
|
|
2023-06-25 23:32:27 +08:00
|
|
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
|
|
|
async def create_chat_completion(request: ChatCompletionRequest):
|
|
|
|
global model, tokenizer
|
|
|
|
|
|
|
|
if request.messages[-1].role != "user":
|
|
|
|
raise HTTPException(status_code=400, detail="Invalid request")
|
|
|
|
query = request.messages[-1].content
|
|
|
|
|
|
|
|
prev_messages = request.messages[:-1]
|
|
|
|
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
|
|
|
query = prev_messages.pop(0).content + query
|
|
|
|
|
|
|
|
history = []
|
|
|
|
if len(prev_messages) % 2 == 0:
|
|
|
|
for i in range(0, len(prev_messages), 2):
|
|
|
|
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
|
|
|
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
|
|
|
|
|
|
|
if request.stream:
|
|
|
|
generate = predict(query, history, request.model)
|
|
|
|
return StreamingResponse(generate, media_type="text/event-stream")
|
|
|
|
|
|
|
|
response, _ = model.chat(tokenizer, query, history=history)
|
|
|
|
choice_data = ChatCompletionResponseChoice(
|
|
|
|
index=0,
|
|
|
|
message=ChatMessage(role="assistant", content=response),
|
|
|
|
finish_reason="stop"
|
|
|
|
)
|
|
|
|
|
|
|
|
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
|
|
|
|
|
|
|
|
|
|
|
async def predict(query: str, history: List[List[str]], model_id: str):
|
|
|
|
global model, tokenizer
|
|
|
|
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
|
|
index=0,
|
|
|
|
delta=DeltaMessage(role="assistant"),
|
|
|
|
finish_reason=None
|
|
|
|
)
|
|
|
|
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
|
|
|
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
|
|
|
|
|
|
|
current_length = 0
|
|
|
|
|
|
|
|
for new_response, _ in model.stream_chat(tokenizer, query, history):
|
|
|
|
if len(new_response) == current_length:
|
|
|
|
continue
|
|
|
|
|
|
|
|
new_text = new_response[current_length:]
|
|
|
|
current_length = len(new_response)
|
|
|
|
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
|
|
index=0,
|
|
|
|
delta=DeltaMessage(content=new_text),
|
|
|
|
finish_reason=None
|
|
|
|
)
|
|
|
|
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
|
|
|
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
|
|
|
|
|
|
|
choice_data = ChatCompletionResponseStreamChoice(
|
|
|
|
index=0,
|
|
|
|
delta=DeltaMessage(),
|
|
|
|
finish_reason="stop"
|
|
|
|
)
|
|
|
|
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
|
|
|
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
|
|
|
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device="cuda")
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|