Merge pull request #323 from HarmonyHu/main
add project link of ChatGLM2-TPU
This commit is contained in:
commit
738e015cac
@ -33,6 +33,7 @@ ChatGLM2-6B 开源模型旨在与开源社区一起推动大模型技术发展
|
||||
对 ChatGLM2 进行加速的开源项目:
|
||||
* [fastllm](https://github.com/ztxz16/fastllm/): 全平台加速推理方案,单GPU批量推理每秒可达10000+token,手机端最低3G内存实时运行(骁龙865上约4~5 token/s)
|
||||
* [chatglm.cpp](https://github.com/li-plus/chatglm.cpp): 类似 llama.cpp 的 CPU 量化加速推理方案,实现 Mac 笔记本上实时对话
|
||||
* [ChatGLM2-TPU](https://github.com/sophgo/ChatGLM2-TPU): 采用TPU加速推理方案,在算能端侧芯片BM1684X(16T@FP16,内存16G)上实时运行约3 token/s
|
||||
|
||||
支持 ChatGLM-6B 和相关应用在线训练的示例项目:
|
||||
* [ChatGLM2-6B 的部署与微调教程](https://www.heywhale.com/mw/project/64984a7b72ebe240516ae79c)
|
||||
|
@ -24,7 +24,10 @@ Although the model strives to ensure the compliance and accuracy of data at each
|
||||
|
||||
## Projects
|
||||
Open source projects that accelerate ChatGLM2:
|
||||
|
||||
* [fastllm](https://github.com/ztxz16/fastllm/): Universal platform acceleration inference solution, single GPU batch inference can reach 10,000+ tokens per second, and it can run in real-time on mobile devices with a minimum of 3GB of memory (about 4~5 tokens/s on Snapdragon 865).
|
||||
* [chatglm.cpp](https://github.com/li-plus/chatglm.cpp): Real-time CPU inference on a MacBook accelerated by quantization, similar to llama.cpp.
|
||||
* [ChatGLM2-TPU](https://github.com/sophgo/ChatGLM2-TPU): Using the TPU accelerated inference solution, it runs about 3 token/s in real time on the end-side chip BM1684X (16T@FP16, 16G DDR).
|
||||
|
||||
Example projects supporting online training of ChatGLM-6B and related applications:
|
||||
* [ChatGLM-6B deployment and fine-tuning tutorial](https://www.heywhale.com/mw/project/64984a7b72ebe240516ae79c)
|
||||
|
Loading…
Reference in New Issue
Block a user