From a33cb4f8b96f8b10061c082802ac4bd8539f61b7 Mon Sep 17 00:00:00 2001
From: duzx16 <904663169@qq.com>
Date: Tue, 4 Jul 2023 20:57:14 +0800
Subject: [PATCH] Fix max sequence padding Use transformers trainer
---
ptuning/evaluate.sh | 2 +-
ptuning/main.py | 4 +-
ptuning/trainer.py | 3782 +-----------------------------------
ptuning/trainer_seq2seq.py | 4 +-
4 files changed, 16 insertions(+), 3776 deletions(-)
diff --git a/ptuning/evaluate.sh b/ptuning/evaluate.sh
index 5efba26..441bd39 100644
--- a/ptuning/evaluate.sh
+++ b/ptuning/evaluate.sh
@@ -10,7 +10,7 @@ torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
--overwrite_cache \
--prompt_column content \
--response_column summary \
- --model_name_or_path chatglm2-6b \
+ --model_name_or_path THUDM/chatglm2-6b \
--ptuning_checkpoint ./output/$CHECKPOINT/checkpoint-$STEP \
--output_dir ./output/$CHECKPOINT \
--overwrite_output_dir \
diff --git a/ptuning/main.py b/ptuning/main.py
index 26bfe6e..e821156 100644
--- a/ptuning/main.py
+++ b/ptuning/main.py
@@ -178,7 +178,7 @@ def main():
return model_inputs
def preprocess_function_train(examples):
- max_seq_length = data_args.max_source_length + data_args.max_target_length
+ max_seq_length = data_args.max_source_length + data_args.max_target_length + 1
model_inputs = {
"input_ids": [],
@@ -335,7 +335,7 @@ def main():
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
- save_prefixencoder=model_args.pre_seq_len is not None
+ save_changed=model_args.pre_seq_len is not None
)
# Training
diff --git a/ptuning/trainer.py b/ptuning/trainer.py
index 63101bc..11aacba 100644
--- a/ptuning/trainer.py
+++ b/ptuning/trainer.py
@@ -15,2799 +15,24 @@
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""
-
-import contextlib
-import functools
-import glob
-import inspect
-import math
import os
-import random
-import re
-import shutil
-import sys
-import time
-import warnings
-from collections.abc import Mapping
-from distutils.util import strtobool
-from pathlib import Path
-from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
+from typing import Optional
+from transformers import Trainer
-from tqdm.auto import tqdm
-
-
-# Integrations must be imported before ML frameworks:
-# isort: off
-from transformers.integrations import (
- default_hp_search_backend,
- get_reporting_integration_callbacks,
- hp_params,
- is_fairscale_available,
- is_optuna_available,
- is_ray_tune_available,
- is_sigopt_available,
- is_wandb_available,
- run_hp_search_optuna,
- run_hp_search_ray,
- run_hp_search_sigopt,
- run_hp_search_wandb,
-)
-
-# isort: on
-
-import numpy as np
import torch
-import torch.distributed as dist
-from huggingface_hub import Repository, create_repo
-from packaging import version
-from torch import nn
-from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
-from torch.utils.data.distributed import DistributedSampler
-
-from transformers import __version__
-from transformers.configuration_utils import PretrainedConfig
-from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
-from transformers.debug_utils import DebugOption, DebugUnderflowOverflow
-from transformers.deepspeed import deepspeed_init, is_deepspeed_zero3_enabled
-from transformers.dependency_versions_check import dep_version_check
-from transformers.modelcard import TrainingSummary
-from transformers.modeling_utils import PreTrainedModel, load_sharded_checkpoint, unwrap_model
-from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_MAPPING_NAMES
-from transformers.optimization import Adafactor, get_scheduler
-from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_10, is_torch_less_than_1_11
-from transformers.tokenization_utils_base import PreTrainedTokenizerBase
-from transformers.trainer_callback import (
- CallbackHandler,
- DefaultFlowCallback,
- PrinterCallback,
- ProgressCallback,
- TrainerCallback,
- TrainerControl,
- TrainerState,
-)
-from transformers.trainer_pt_utils import (
- DistributedLengthGroupedSampler,
- DistributedSamplerWithLoop,
- DistributedTensorGatherer,
- IterableDatasetShard,
- LabelSmoother,
- LengthGroupedSampler,
- SequentialDistributedSampler,
- ShardSampler,
- distributed_broadcast_scalars,
- distributed_concat,
- find_batch_size,
- get_module_class_from_name,
- get_parameter_names,
- nested_concat,
- nested_detach,
- nested_numpify,
- nested_truncate,
- nested_xla_mesh_reduce,
- reissue_pt_warnings,
-)
-from transformers.trainer_utils import (
- PREFIX_CHECKPOINT_DIR,
- BestRun,
- EvalLoopOutput,
- EvalPrediction,
- FSDPOption,
- HPSearchBackend,
- HubStrategy,
- IntervalStrategy,
- PredictionOutput,
- RemoveColumnsCollator,
- ShardedDDPOption,
- TrainerMemoryTracker,
- TrainOutput,
- default_compute_objective,
- default_hp_space,
- denumpify_detensorize,
- enable_full_determinism,
- find_executable_batch_size,
- get_last_checkpoint,
- has_length,
- number_of_arguments,
- seed_worker,
- set_seed,
- speed_metrics,
-)
-from transformers.training_args import OptimizerNames, ParallelMode, TrainingArguments
-from transformers.utils import (
- CONFIG_NAME,
- WEIGHTS_INDEX_NAME,
- WEIGHTS_NAME,
- can_return_loss,
- find_labels,
- get_full_repo_name,
- is_accelerate_available,
- is_apex_available,
- is_datasets_available,
- is_in_notebook,
- is_ipex_available,
- is_sagemaker_dp_enabled,
- is_sagemaker_mp_enabled,
- is_torch_compile_available,
- is_torch_neuroncore_available,
- is_torch_tpu_available,
- logging,
-)
-from transformers.utils.generic import ContextManagers
-
-
-_is_native_cpu_amp_available = is_torch_greater_or_equal_than_1_10
-
-DEFAULT_CALLBACKS = [DefaultFlowCallback]
-DEFAULT_PROGRESS_CALLBACK = ProgressCallback
-
-if is_in_notebook():
- from transformers.utils.notebook import NotebookProgressCallback
-
- DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
-
-if is_apex_available():
- from apex import amp
-
-if is_datasets_available():
- import datasets
-
-if is_torch_tpu_available(check_device=False):
- import torch_xla.core.xla_model as xm
- import torch_xla.debug.metrics as met
- import torch_xla.distributed.parallel_loader as pl
-
-if is_fairscale_available():
- dep_version_check("fairscale")
- import fairscale
- from fairscale.nn.data_parallel import FullyShardedDataParallel as FullyShardedDDP
- from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
- from fairscale.nn.wrap import auto_wrap
- from fairscale.optim import OSS
- from fairscale.optim.grad_scaler import ShardedGradScaler
-
-
-if is_sagemaker_mp_enabled():
- import smdistributed.modelparallel.torch as smp
- from smdistributed.modelparallel import __version__ as SMP_VERSION
-
- IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
-
- from transformers.trainer_pt_utils import smp_forward_backward, smp_forward_only, smp_gather, smp_nested_concat
-else:
- IS_SAGEMAKER_MP_POST_1_10 = False
-
-
-skip_first_batches = None
-if is_accelerate_available():
- from accelerate import __version__ as accelerate_version
-
- if version.parse(accelerate_version) >= version.parse("0.16"):
- from accelerate import skip_first_batches
-
-
-if TYPE_CHECKING:
- import optuna
+from transformers.modeling_utils import PreTrainedModel, unwrap_model
+from transformers.utils import logging
logger = logging.get_logger(__name__)
-
-# Name of the files used for checkpointing
+WEIGHTS_NAME = "pytorch_model.bin"
TRAINING_ARGS_NAME = "training_args.bin"
-TRAINER_STATE_NAME = "trainer_state.json"
-OPTIMIZER_NAME = "optimizer.pt"
-SCHEDULER_NAME = "scheduler.pt"
-SCALER_NAME = "scaler.pt"
-class Trainer:
- """
- Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers.
-
- Args:
- model ([`PreTrainedModel`] or `torch.nn.Module`, *optional*):
- The model to train, evaluate or use for predictions. If not provided, a `model_init` must be passed.
-
-
-
- [`Trainer`] is optimized to work with the [`PreTrainedModel`] provided by the library. You can still use
- your own models defined as `torch.nn.Module` as long as they work the same way as the 🤗 Transformers
- models.
-
-
-
- args ([`TrainingArguments`], *optional*):
- The arguments to tweak for training. Will default to a basic instance of [`TrainingArguments`] with the
- `output_dir` set to a directory named *tmp_trainer* in the current directory if not provided.
- data_collator (`DataCollator`, *optional*):
- The function to use to form a batch from a list of elements of `train_dataset` or `eval_dataset`. Will
- default to [`default_data_collator`] if no `tokenizer` is provided, an instance of
- [`DataCollatorWithPadding`] otherwise.
- train_dataset (`torch.utils.data.Dataset` or `torch.utils.data.IterableDataset`, *optional*):
- The dataset to use for training. If it is a [`~datasets.Dataset`], columns not accepted by the
- `model.forward()` method are automatically removed.
-
- Note that if it's a `torch.utils.data.IterableDataset` with some randomization and you are training in a
- distributed fashion, your iterable dataset should either use a internal attribute `generator` that is a
- `torch.Generator` for the randomization that must be identical on all processes (and the Trainer will
- manually set the seed of this `generator` at each epoch) or have a `set_epoch()` method that internally
- sets the seed of the RNGs used.
- eval_dataset (Union[`torch.utils.data.Dataset`, Dict[str, `torch.utils.data.Dataset`]), *optional*):
- The dataset to use for evaluation. If it is a [`~datasets.Dataset`], columns not accepted by the
- `model.forward()` method are automatically removed. If it is a dictionary, it will evaluate on each
- dataset prepending the dictionary key to the metric name.
- tokenizer ([`PreTrainedTokenizerBase`], *optional*):
- The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs to the
- maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
- interrupted training or reuse the fine-tuned model.
- model_init (`Callable[[], PreTrainedModel]`, *optional*):
- A function that instantiates the model to be used. If provided, each call to [`~Trainer.train`] will start
- from a new instance of the model as given by this function.
-
- The function may have zero argument, or a single one containing the optuna/Ray Tune/SigOpt trial object, to
- be able to choose different architectures according to hyper parameters (such as layer count, sizes of
- inner layers, dropout probabilities etc).
- compute_metrics (`Callable[[EvalPrediction], Dict]`, *optional*):
- The function that will be used to compute metrics at evaluation. Must take a [`EvalPrediction`] and return
- a dictionary string to metric values.
- callbacks (List of [`TrainerCallback`], *optional*):
- A list of callbacks to customize the training loop. Will add those to the list of default callbacks
- detailed in [here](callback).
-
- If you want to remove one of the default callbacks used, use the [`Trainer.remove_callback`] method.
- optimizers (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*): A tuple
- containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your model
- and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
- preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*):
- A function that preprocess the logits right before caching them at each evaluation step. Must take two
- tensors, the logits and the labels, and return the logits once processed as desired. The modifications made
- by this function will be reflected in the predictions received by `compute_metrics`.
-
- Note that the labels (second parameter) will be `None` if the dataset does not have them.
-
- Important attributes:
-
- - **model** -- Always points to the core model. If using a transformers model, it will be a [`PreTrainedModel`]
- subclass.
- - **model_wrapped** -- Always points to the most external model in case one or more other modules wrap the
- original model. This is the model that should be used for the forward pass. For example, under `DeepSpeed`,
- the inner model is wrapped in `DeepSpeed` and then again in `torch.nn.DistributedDataParallel`. If the inner
- model hasn't been wrapped, then `self.model_wrapped` is the same as `self.model`.
- - **is_model_parallel** -- Whether or not a model has been switched to a model parallel mode (different from
- data parallelism, this means some of the model layers are split on different GPUs).
- - **place_model_on_device** -- Whether or not to automatically place the model on the device - it will be set
- to `False` if model parallel or deepspeed is used, or if the default
- `TrainingArguments.place_model_on_device` is overridden to return `False` .
- - **is_in_train** -- Whether or not a model is currently running `train` (e.g. when `evaluate` is called while
- in `train`)
-
- """
-
- from transformers.trainer_pt_utils import _get_learning_rate, log_metrics, metrics_format, save_metrics, save_state
-
- def __init__(
- self,
- model: Union[PreTrainedModel, nn.Module] = None,
- args: TrainingArguments = None,
- data_collator: Optional[DataCollator] = None,
- train_dataset: Optional[Dataset] = None,
- eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
- tokenizer: Optional[PreTrainedTokenizerBase] = None,
- model_init: Optional[Callable[[], PreTrainedModel]] = None,
- compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
- callbacks: Optional[List[TrainerCallback]] = None,
- optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
- preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
- save_prefixencoder: bool = False,
- ):
- self.save_prefixencoder = save_prefixencoder
- if args is None:
- output_dir = "tmp_trainer"
- logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
- args = TrainingArguments(output_dir=output_dir)
- self.args = args
- # Seed must be set before instantiating the model when using model
- enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
- self.hp_name = None
- self.deepspeed = None
- self.is_in_train = False
-
- # memory metrics - must set up as early as possible
- self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
- self._memory_tracker.start()
-
- # set the correct log level depending on the node
- log_level = args.get_process_log_level()
- logging.set_verbosity(log_level)
-
- # force device and distributed setup init explicitly
- args._setup_devices
-
- if model is None:
- if model_init is not None:
- self.model_init = model_init
- model = self.call_model_init()
- else:
- raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
- else:
- if model_init is not None:
- warnings.warn(
- "`Trainer` requires either a `model` or `model_init` argument, but not both. `model_init` will"
- " overwrite your model when calling the `train` method. This will become a fatal error in the next"
- " release.",
- FutureWarning,
- )
- self.model_init = model_init
-
- if model.__class__.__name__ in MODEL_MAPPING_NAMES:
- raise ValueError(
- f"The model you have picked ({model.__class__.__name__}) cannot be used as is for training: it only "
- "computes hidden states and does not accept any labels. You should choose a model with a head "
- "suitable for your task like any of the `AutoModelForXxx` listed at "
- "https://huggingface.co/docs/transformers/model_doc/auto."
- )
-
- if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
- self.is_model_parallel = True
- else:
- self.is_model_parallel = False
-
- # At this stage the model is already loaded
- if getattr(model, "is_loaded_in_8bit", False):
- if getattr(model, "_is_int8_training_enabled", False):
- logger.info(
- "The model is loaded in 8-bit precision. To train this model you need to add additional modules"
- " inside the model such as adapters using `peft` library and freeze the model weights. Please"
- " check "
- " the examples in https://github.com/huggingface/peft for more details."
- )
- else:
- raise ValueError(
- "The model you want to train is loaded in 8-bit precision. if you want to fine-tune an 8-bit"
- " model, please make sure that you have installed `bitsandbytes>=0.37.0`. "
- )
-
- # Setup Sharded DDP training
- self.sharded_ddp = None
- if len(args.sharded_ddp) > 0:
- if args.deepspeed:
- raise ValueError(
- "Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
- )
- if len(args.fsdp) > 0:
- raise ValueError(
- "Using --sharded_ddp xxx together with --fsdp is not possible, deactivate one of those flags."
- )
-
- if args.local_rank == -1:
- raise ValueError("Using sharded DDP only works in distributed training.")
- elif not is_fairscale_available():
- raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
- elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
- raise ImportError(
- "Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
- f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
- )
- elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
- self.sharded_ddp = ShardedDDPOption.SIMPLE
- elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
- self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
- elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
- self.sharded_ddp = ShardedDDPOption.ZERO_DP_3
-
- self.fsdp = None
- if len(args.fsdp) > 0:
- if args.deepspeed:
- raise ValueError(
- "Using --fsdp xxx together with --deepspeed is not possible, deactivate one of those flags."
- )
- if not args.fsdp_config["xla"] and args.local_rank == -1:
- raise ValueError("Using fsdp only works in distributed training.")
-
- # dep_version_check("torch>=1.12.0")
- # Would have to update setup.py with torch>=1.12.0
- # which isn't ideally given that it will force people not using FSDP to also use torch>=1.12.0
- # below is the current alternative.
- if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.12.0"):
- raise ValueError("FSDP requires PyTorch >= 1.12.0")
-
- from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch, ShardingStrategy
-
- if FSDPOption.FULL_SHARD in args.fsdp:
- self.fsdp = ShardingStrategy.FULL_SHARD
- elif FSDPOption.SHARD_GRAD_OP in args.fsdp:
- self.fsdp = ShardingStrategy.SHARD_GRAD_OP
- elif FSDPOption.NO_SHARD in args.fsdp:
- self.fsdp = ShardingStrategy.NO_SHARD
-
- self.backward_prefetch = BackwardPrefetch.BACKWARD_PRE
- if "backward_prefetch" in self.args.fsdp_config and "backward_pos" not in self.backward_prefetch:
- self.backward_prefetch = BackwardPrefetch.BACKWARD_POST
-
- self.forword_prefetch = False
- if self.args.fsdp_config.get("forword_prefect", False):
- self.forword_prefetch = True
-
- self.limit_all_gathers = False
- if self.args.fsdp_config.get("limit_all_gathers", False):
- self.limit_all_gathers = True
-
- # one place to sort out whether to place the model on device or not
- # postpone switching model to cuda when:
- # 1. MP - since we are trying to fit a much bigger than 1 gpu model
- # 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
- # and we only use deepspeed for training at the moment
- # 3. full bf16 or fp16 eval - since the model needs to be cast to the right dtype first
- # 4. Sharded DDP - same as MP
- # 5. FSDP - same as MP
- self.place_model_on_device = args.place_model_on_device
- if (
- self.is_model_parallel
- or args.deepspeed
- or ((args.fp16_full_eval or args.bf16_full_eval) and not args.do_train)
- or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
- or (self.fsdp is not None)
- ):
- self.place_model_on_device = False
-
- default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
- self.data_collator = data_collator if data_collator is not None else default_collator
- self.train_dataset = train_dataset
- self.eval_dataset = eval_dataset
- self.tokenizer = tokenizer
-
- if self.place_model_on_device and not getattr(model, "is_loaded_in_8bit", False):
- self._move_model_to_device(model, args.device)
-
- # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
- if self.is_model_parallel:
- self.args._n_gpu = 1
-
- # later use `self.model is self.model_wrapped` to check if it's wrapped or not
- self.model_wrapped = model
- self.model = model
-
- self.compute_metrics = compute_metrics
- self.preprocess_logits_for_metrics = preprocess_logits_for_metrics
- self.optimizer, self.lr_scheduler = optimizers
- if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
- raise RuntimeError(
- "Passing a `model_init` is incompatible with providing the `optimizers` argument. "
- "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
- )
- if is_torch_tpu_available() and self.optimizer is not None:
- for param in self.model.parameters():
- model_device = param.device
- break
- for param_group in self.optimizer.param_groups:
- if len(param_group["params"]) > 0:
- optimizer_device = param_group["params"][0].device
- break
- if model_device != optimizer_device:
- raise ValueError(
- "The model and the optimizer parameters are not on the same device, which probably means you"
- " created an optimizer around your model **before** putting on the device and passing it to the"
- " `Trainer`. Make sure the lines `import torch_xla.core.xla_model as xm` and"
- " `model.to(xm.xla_device())` is performed before the optimizer creation in your script."
- )
- if ((self.sharded_ddp is not None) or args.deepspeed or (self.fsdp is not None)) and (
- self.optimizer is not None or self.lr_scheduler is not None
- ):
- raise RuntimeError(
- "Passing `optimizers` is not allowed if Fairscale, Deepspeed or PyTorch FSDP is enabled."
- "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
- )
- default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
- callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
- self.callback_handler = CallbackHandler(
- callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
- )
- self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
-
- # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
- self._loggers_initialized = False
-
- # Create clone of distant repo and output directory if needed
- if self.args.push_to_hub:
- self.init_git_repo(at_init=True)
- # In case of pull, we need to make sure every process has the latest.
- if is_torch_tpu_available():
- xm.rendezvous("init git repo")
- elif args.local_rank != -1:
- dist.barrier()
-
- if self.args.should_save:
- os.makedirs(self.args.output_dir, exist_ok=True)
-
- if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
- raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
-
- if args.max_steps > 0:
- logger.info("max_steps is given, it will override any value given in num_train_epochs")
-
- if train_dataset is not None and not has_length(train_dataset) and args.max_steps <= 0:
- raise ValueError("train_dataset does not implement __len__, max_steps has to be specified")
-
- if (
- train_dataset is not None
- and isinstance(train_dataset, torch.utils.data.IterableDataset)
- and args.group_by_length
- ):
- raise ValueError("the `--group_by_length` option is only available for `Dataset`, not `IterableDataset")
-
- self._signature_columns = None
-
- # Mixed precision setup
- self.use_apex = False
- self.use_cuda_amp = False
- self.use_cpu_amp = False
-
- # Mixed precision setup for SageMaker Model Parallel
- if is_sagemaker_mp_enabled():
- # BF16 + model parallelism in SageMaker: currently not supported, raise an error
- if args.bf16:
- raise ValueError("SageMaker Model Parallelism does not support BF16 yet. Please use FP16 instead ")
-
- if IS_SAGEMAKER_MP_POST_1_10:
- # When there's mismatch between SMP config and trainer argument, use SMP config as truth
- if args.fp16 != smp.state.cfg.fp16:
- logger.warning(
- f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16},"
- f"but FP16 provided in trainer argument is {args.fp16},"
- f"setting to {smp.state.cfg.fp16}"
- )
- args.fp16 = smp.state.cfg.fp16
- else:
- # smp < 1.10 does not support fp16 in trainer.
- if hasattr(smp.state.cfg, "fp16"):
- logger.warning(
- f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, "
- "but SageMaker Model Parallelism < 1.10 does not support FP16 in trainer."
- )
-
- if args.fp16 or args.bf16:
- if args.half_precision_backend == "auto":
- if args.device == torch.device("cpu"):
- if args.fp16:
- raise ValueError("Tried to use `fp16` but it is not supported on cpu")
- elif _is_native_cpu_amp_available:
- args.half_precision_backend = "cpu_amp"
- else:
- raise ValueError("Tried to use cpu amp but native cpu amp is not available")
- else:
- args.half_precision_backend = "cuda_amp"
-
- logger.info(f"Using {args.half_precision_backend} half precision backend")
-
- self.do_grad_scaling = False
- if (args.fp16 or args.bf16) and not (args.deepspeed or is_sagemaker_mp_enabled() or is_torch_tpu_available()):
- # deepspeed and SageMaker Model Parallel manage their own half precision
- if args.half_precision_backend == "cuda_amp":
- self.use_cuda_amp = True
- self.amp_dtype = torch.float16 if args.fp16 else torch.bfloat16
- # bf16 does not need grad scaling
- self.do_grad_scaling = self.amp_dtype == torch.float16
- if self.do_grad_scaling:
- if self.sharded_ddp is not None:
- self.scaler = ShardedGradScaler()
- elif self.fsdp is not None:
- from torch.distributed.fsdp.sharded_grad_scaler import (
- ShardedGradScaler as FSDPShardedGradScaler,
- )
-
- self.scaler = FSDPShardedGradScaler()
- elif is_torch_tpu_available():
- from torch_xla.amp import GradScaler
-
- self.scaler = GradScaler()
- else:
- self.scaler = torch.cuda.amp.GradScaler()
- elif args.half_precision_backend == "cpu_amp":
- self.use_cpu_amp = True
- self.amp_dtype = torch.bfloat16
- else:
- if not is_apex_available():
- raise ImportError(
- "Using FP16 with APEX but APEX is not installed, please refer to"
- " https://www.github.com/nvidia/apex."
- )
- self.use_apex = True
-
- # FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error.
- if (
- is_sagemaker_mp_enabled()
- and self.use_cuda_amp
- and args.max_grad_norm is not None
- and args.max_grad_norm > 0
- ):
- raise ValueError(
- "SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass "
- "along 'max_grad_norm': 0 in your hyperparameters."
- )
-
- # Label smoothing
- if self.args.label_smoothing_factor != 0:
- self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
- else:
- self.label_smoother = None
-
- self.state = TrainerState(
- is_local_process_zero=self.is_local_process_zero(),
- is_world_process_zero=self.is_world_process_zero(),
- )
-
- self.control = TrainerControl()
- # Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
- # returned to 0 every time flos need to be logged
- self.current_flos = 0
- self.hp_search_backend = None
- self.use_tune_checkpoints = False
- default_label_names = find_labels(self.model.__class__)
- self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
- self.can_return_loss = can_return_loss(self.model.__class__)
- self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)
-
- # Internal variables to keep track of the original batch size
- self._train_batch_size = args.train_batch_size
-
- # very last
- self._memory_tracker.stop_and_update_metrics()
-
- # torch.compile
- if args.torch_compile and not is_torch_compile_available():
- raise RuntimeError("Using torch.compile requires PyTorch 2.0 or higher.")
-
- def add_callback(self, callback):
- """
- Add a callback to the current list of [`~transformer.TrainerCallback`].
-
- Args:
- callback (`type` or [`~transformer.TrainerCallback`]):
- A [`~transformer.TrainerCallback`] class or an instance of a [`~transformer.TrainerCallback`]. In the
- first case, will instantiate a member of that class.
- """
- self.callback_handler.add_callback(callback)
-
- def pop_callback(self, callback):
- """
- Remove a callback from the current list of [`~transformer.TrainerCallback`] and returns it.
-
- If the callback is not found, returns `None` (and no error is raised).
-
- Args:
- callback (`type` or [`~transformer.TrainerCallback`]):
- A [`~transformer.TrainerCallback`] class or an instance of a [`~transformer.TrainerCallback`]. In the
- first case, will pop the first member of that class found in the list of callbacks.
-
- Returns:
- [`~transformer.TrainerCallback`]: The callback removed, if found.
- """
- return self.callback_handler.pop_callback(callback)
-
- def remove_callback(self, callback):
- """
- Remove a callback from the current list of [`~transformer.TrainerCallback`].
-
- Args:
- callback (`type` or [`~transformer.TrainerCallback`]):
- A [`~transformer.TrainerCallback`] class or an instance of a [`~transformer.TrainerCallback`]. In the
- first case, will remove the first member of that class found in the list of callbacks.
- """
- self.callback_handler.remove_callback(callback)
-
- def _move_model_to_device(self, model, device):
- model = model.to(device)
- # Moving a model to an XLA device disconnects the tied weights, so we have to retie them.
- if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"):
- model.tie_weights()
-
- def _set_signature_columns_if_needed(self):
- if self._signature_columns is None:
- # Inspect model forward signature to keep only the arguments it accepts.
- signature = inspect.signature(self.model.forward)
- self._signature_columns = list(signature.parameters.keys())
- # Labels may be named label or label_ids, the default data collator handles that.
- self._signature_columns += list(set(["label", "label_ids"] + self.label_names))
-
- def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
- if not self.args.remove_unused_columns:
- return dataset
- self._set_signature_columns_if_needed()
- signature_columns = self._signature_columns
-
- ignored_columns = list(set(dataset.column_names) - set(signature_columns))
- if len(ignored_columns) > 0:
- dset_description = "" if description is None else f"in the {description} set"
- logger.info(
- f"The following columns {dset_description} don't have a corresponding argument in "
- f"`{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
- f" If {', '.join(ignored_columns)} are not expected by `{self.model.__class__.__name__}.forward`, "
- " you can safely ignore this message."
- )
-
- columns = [k for k in signature_columns if k in dataset.column_names]
-
- if version.parse(datasets.__version__) < version.parse("1.4.0"):
- dataset.set_format(
- type=dataset.format["type"], columns=columns, format_kwargs=dataset.format["format_kwargs"]
- )
- return dataset
- else:
- return dataset.remove_columns(ignored_columns)
-
- def _get_collator_with_removed_columns(
- self, data_collator: Callable, description: Optional[str] = None
- ) -> Callable:
- """Wrap the data collator in a callable removing unused columns."""
- if not self.args.remove_unused_columns:
- return data_collator
- self._set_signature_columns_if_needed()
- signature_columns = self._signature_columns
-
- remove_columns_collator = RemoveColumnsCollator(
- data_collator=data_collator,
- signature_columns=signature_columns,
- logger=logger,
- description=description,
- model_name=self.model.__class__.__name__,
- )
- return remove_columns_collator
-
- def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
- if self.train_dataset is None or not has_length(self.train_dataset):
- return None
-
- generator = None
- if self.args.world_size <= 1:
- generator = torch.Generator()
- # for backwards compatibility, we generate a seed here (which is sampled from a generator seeded with
- # `args.seed`) if data_seed isn't provided.
- # Further on in this method, we default to `args.seed` instead.
- if self.args.data_seed is None:
- seed = int(torch.empty((), dtype=torch.int64).random_().item())
- else:
- seed = self.args.data_seed
- generator.manual_seed(seed)
-
- seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
-
- # Build the sampler.
- if self.args.group_by_length:
- if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
- lengths = (
- self.train_dataset[self.args.length_column_name]
- if self.args.length_column_name in self.train_dataset.column_names
- else None
- )
- else:
- lengths = None
- model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
- if self.args.world_size <= 1:
- return LengthGroupedSampler(
- self.args.train_batch_size * self.args.gradient_accumulation_steps,
- dataset=self.train_dataset,
- lengths=lengths,
- model_input_name=model_input_name,
- generator=generator,
- )
- else:
- return DistributedLengthGroupedSampler(
- self.args.train_batch_size * self.args.gradient_accumulation_steps,
- dataset=self.train_dataset,
- num_replicas=self.args.world_size,
- rank=self.args.process_index,
- lengths=lengths,
- model_input_name=model_input_name,
- seed=seed,
- )
-
- else:
- if self.args.world_size <= 1:
- return RandomSampler(self.train_dataset, generator=generator)
- elif (
- self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
- and not self.args.dataloader_drop_last
- ):
- # Use a loop for TPUs when drop_last is False to have all batches have the same size.
- return DistributedSamplerWithLoop(
- self.train_dataset,
- batch_size=self.args.per_device_train_batch_size,
- num_replicas=self.args.world_size,
- rank=self.args.process_index,
- seed=seed,
- )
- else:
- return DistributedSampler(
- self.train_dataset,
- num_replicas=self.args.world_size,
- rank=self.args.process_index,
- seed=seed,
- )
-
- def get_train_dataloader(self) -> DataLoader:
- """
- Returns the training [`~torch.utils.data.DataLoader`].
-
- Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed
- training if necessary) otherwise.
-
- Subclass and override this method if you want to inject some custom behavior.
- """
- if self.train_dataset is None:
- raise ValueError("Trainer: training requires a train_dataset.")
-
- train_dataset = self.train_dataset
- data_collator = self.data_collator
- if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
- train_dataset = self._remove_unused_columns(train_dataset, description="training")
- else:
- data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
-
- if isinstance(train_dataset, torch.utils.data.IterableDataset):
- if self.args.world_size > 1:
- train_dataset = IterableDatasetShard(
- train_dataset,
- batch_size=self._train_batch_size,
- drop_last=self.args.dataloader_drop_last,
- num_processes=self.args.world_size,
- process_index=self.args.process_index,
- )
-
- return DataLoader(
- train_dataset,
- batch_size=self._train_batch_size,
- collate_fn=data_collator,
- num_workers=self.args.dataloader_num_workers,
- pin_memory=self.args.dataloader_pin_memory,
- )
-
- train_sampler = self._get_train_sampler()
-
- return DataLoader(
- train_dataset,
- batch_size=self._train_batch_size,
- sampler=train_sampler,
- collate_fn=data_collator,
- drop_last=self.args.dataloader_drop_last,
- num_workers=self.args.dataloader_num_workers,
- pin_memory=self.args.dataloader_pin_memory,
- worker_init_fn=seed_worker,
- )
-
- def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
- # Deprecated code
- if self.args.use_legacy_prediction_loop:
- if is_torch_tpu_available():
- return SequentialDistributedSampler(
- eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()
- )
- elif is_sagemaker_mp_enabled():
- return SequentialDistributedSampler(
- eval_dataset,
- num_replicas=smp.dp_size(),
- rank=smp.dp_rank(),
- batch_size=self.args.per_device_eval_batch_size,
- )
- elif self.args.local_rank != -1:
- return SequentialDistributedSampler(eval_dataset)
- else:
- return SequentialSampler(eval_dataset)
-
- if self.args.world_size <= 1:
- return SequentialSampler(eval_dataset)
- else:
- return ShardSampler(
- eval_dataset,
- batch_size=self.args.per_device_eval_batch_size,
- num_processes=self.args.world_size,
- process_index=self.args.process_index,
- )
-
- def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
- """
- Returns the evaluation [`~torch.utils.data.DataLoader`].
-
- Subclass and override this method if you want to inject some custom behavior.
-
- Args:
- eval_dataset (`torch.utils.data.Dataset`, *optional*):
- If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted
- by the `model.forward()` method are automatically removed. It must implement `__len__`.
- """
- if eval_dataset is None and self.eval_dataset is None:
- raise ValueError("Trainer: evaluation requires an eval_dataset.")
- eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
- data_collator = self.data_collator
-
- if is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
- eval_dataset = self._remove_unused_columns(eval_dataset, description="evaluation")
- else:
- data_collator = self._get_collator_with_removed_columns(data_collator, description="evaluation")
-
- if isinstance(eval_dataset, torch.utils.data.IterableDataset):
- if self.args.world_size > 1:
- eval_dataset = IterableDatasetShard(
- eval_dataset,
- batch_size=self.args.per_device_eval_batch_size,
- drop_last=self.args.dataloader_drop_last,
- num_processes=self.args.world_size,
- process_index=self.args.process_index,
- )
- return DataLoader(
- eval_dataset,
- batch_size=self.args.eval_batch_size,
- collate_fn=data_collator,
- num_workers=self.args.dataloader_num_workers,
- pin_memory=self.args.dataloader_pin_memory,
- )
-
- eval_sampler = self._get_eval_sampler(eval_dataset)
-
- return DataLoader(
- eval_dataset,
- sampler=eval_sampler,
- batch_size=self.args.eval_batch_size,
- collate_fn=data_collator,
- drop_last=self.args.dataloader_drop_last,
- num_workers=self.args.dataloader_num_workers,
- pin_memory=self.args.dataloader_pin_memory,
- )
-
- def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
- """
- Returns the test [`~torch.utils.data.DataLoader`].
-
- Subclass and override this method if you want to inject some custom behavior.
-
- Args:
- test_dataset (`torch.utils.data.Dataset`, *optional*):
- The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the
- `model.forward()` method are automatically removed. It must implement `__len__`.
- """
- data_collator = self.data_collator
-
- if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
- test_dataset = self._remove_unused_columns(test_dataset, description="test")
- else:
- data_collator = self._get_collator_with_removed_columns(data_collator, description="test")
-
- if isinstance(test_dataset, torch.utils.data.IterableDataset):
- if self.args.world_size > 1:
- test_dataset = IterableDatasetShard(
- test_dataset,
- batch_size=self.args.eval_batch_size,
- drop_last=self.args.dataloader_drop_last,
- num_processes=self.args.world_size,
- process_index=self.args.process_index,
- )
- return DataLoader(
- test_dataset,
- batch_size=self.args.eval_batch_size,
- collate_fn=data_collator,
- num_workers=self.args.dataloader_num_workers,
- pin_memory=self.args.dataloader_pin_memory,
- )
-
- test_sampler = self._get_eval_sampler(test_dataset)
-
- # We use the same batch_size as for eval.
- return DataLoader(
- test_dataset,
- sampler=test_sampler,
- batch_size=self.args.eval_batch_size,
- collate_fn=data_collator,
- drop_last=self.args.dataloader_drop_last,
- num_workers=self.args.dataloader_num_workers,
- pin_memory=self.args.dataloader_pin_memory,
- )
-
- def create_optimizer_and_scheduler(self, num_training_steps: int):
- """
- Setup the optimizer and the learning rate scheduler.
-
- We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
- Trainer's init through `optimizers`, or subclass and override this method (or `create_optimizer` and/or
- `create_scheduler`) in a subclass.
- """
- self.create_optimizer()
- if IS_SAGEMAKER_MP_POST_1_10 and smp.state.cfg.fp16:
- # If smp >= 1.10 and fp16 is enabled, we unwrap the optimizer
- optimizer = self.optimizer.optimizer
- else:
- optimizer = self.optimizer
- self.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
-
- def create_optimizer(self):
- """
- Setup the optimizer.
-
- We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
- Trainer's init through `optimizers`, or subclass and override this method in a subclass.
- """
- opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
-
- if self.optimizer is None:
- decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
- decay_parameters = [name for name in decay_parameters if "bias" not in name]
- optimizer_grouped_parameters = [
- {
- "params": [
- p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
- ],
- "weight_decay": self.args.weight_decay,
- },
- {
- "params": [
- p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
- ],
- "weight_decay": 0.0,
- },
- ]
-
- optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
-
- if self.sharded_ddp == ShardedDDPOption.SIMPLE:
- self.optimizer = OSS(
- params=optimizer_grouped_parameters,
- optim=optimizer_cls,
- **optimizer_kwargs,
- )
- else:
- self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
- if optimizer_cls.__name__ == "Adam8bit":
- import bitsandbytes
-
- manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
-
- skipped = 0
- for module in opt_model.modules():
- if isinstance(module, nn.Embedding):
- skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
- print(f"skipped {module}: {skipped/2**20}M params")
- manager.register_module_override(module, "weight", {"optim_bits": 32})
- logger.debug(f"bitsandbytes: will optimize {module} in fp32")
- print(f"skipped: {skipped/2**20}M params")
-
- if is_sagemaker_mp_enabled():
- self.optimizer = smp.DistributedOptimizer(self.optimizer)
-
- return self.optimizer
-
- @staticmethod
- def get_optimizer_cls_and_kwargs(args: TrainingArguments) -> Tuple[Any, Any]:
- """
- Returns the optimizer class and optimizer parameters based on the training arguments.
-
- Args:
- args (`transformers.training_args.TrainingArguments`):
- The training arguments for the training session.
-
- """
-
- # parse args.optim_args
- optim_args = {}
- if args.optim_args:
- for mapping in args.optim_args.replace(" ", "").split(","):
- key, value = mapping.split("=")
- optim_args[key] = value
-
- optimizer_kwargs = {"lr": args.learning_rate}
-
- adam_kwargs = {
- "betas": (args.adam_beta1, args.adam_beta2),
- "eps": args.adam_epsilon,
- }
- if args.optim == OptimizerNames.ADAFACTOR:
- optimizer_cls = Adafactor
- optimizer_kwargs.update({"scale_parameter": False, "relative_step": False})
- elif args.optim == OptimizerNames.ADAMW_HF:
- from transformers.optimization import AdamW
-
- optimizer_cls = AdamW
- optimizer_kwargs.update(adam_kwargs)
- elif args.optim in [OptimizerNames.ADAMW_TORCH, OptimizerNames.ADAMW_TORCH_FUSED]:
- from torch.optim import AdamW
-
- optimizer_cls = AdamW
- optimizer_kwargs.update(adam_kwargs)
- if args.optim == OptimizerNames.ADAMW_TORCH_FUSED:
- optimizer_kwargs.update({"fused": True})
- elif args.optim == OptimizerNames.ADAMW_TORCH_XLA:
- try:
- from torch_xla.amp.syncfree import AdamW
-
- optimizer_cls = AdamW
- optimizer_kwargs.update(adam_kwargs)
- except ImportError:
- raise ValueError("Trainer failed to import syncfree AdamW from torch_xla.")
- elif args.optim == OptimizerNames.ADAMW_APEX_FUSED:
- try:
- from apex.optimizers import FusedAdam
-
- optimizer_cls = FusedAdam
- optimizer_kwargs.update(adam_kwargs)
- except ImportError:
- raise ValueError("Trainer tried to instantiate apex FusedAdam but apex is not installed!")
- elif args.optim == OptimizerNames.ADAMW_BNB:
- try:
- from bitsandbytes.optim import Adam8bit
-
- optimizer_cls = Adam8bit
- optimizer_kwargs.update(adam_kwargs)
- except ImportError:
- raise ValueError("Trainer tried to instantiate bnb Adam8bit but bnb is not installed!")
- elif args.optim == OptimizerNames.ADAMW_ANYPRECISION:
- try:
- from torchdistx.optimizers import AnyPrecisionAdamW
-
- optimizer_cls = AnyPrecisionAdamW
- optimizer_kwargs.update(adam_kwargs)
-
- # TODO Change dtypes back to M=FP32, Var = BF16, Kahan = False once they can be cast together in torchdistx.
- optimizer_kwargs.update(
- {
- "use_kahan_summation": strtobool(optim_args.get("use_kahan_summation", "False")),
- "momentum_dtype": getattr(torch, optim_args.get("momentum_dtype", "float32")),
- "variance_dtype": getattr(torch, optim_args.get("variance_dtype", "float32")),
- "compensation_buffer_dtype": getattr(
- torch, optim_args.get("compensation_buffer_dtype", "bfloat16")
- ),
- }
- )
- except ImportError:
- raise ValueError("Please install https://github.com/pytorch/torchdistx")
- elif args.optim == OptimizerNames.SGD:
- optimizer_cls = torch.optim.SGD
- elif args.optim == OptimizerNames.ADAGRAD:
- optimizer_cls = torch.optim.Adagrad
- else:
- raise ValueError(f"Trainer cannot instantiate unsupported optimizer: {args.optim}")
- return optimizer_cls, optimizer_kwargs
-
- def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
- """
- Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
- passed as an argument.
-
- Args:
- num_training_steps (int): The number of training steps to do.
- """
- if self.lr_scheduler is None:
- self.lr_scheduler = get_scheduler(
- self.args.lr_scheduler_type,
- optimizer=self.optimizer if optimizer is None else optimizer,
- num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
- num_training_steps=num_training_steps,
- )
- return self.lr_scheduler
-
- def num_examples(self, dataloader: DataLoader) -> int:
- """
- Helper to get number of samples in a [`~torch.utils.data.DataLoader`] by accessing its dataset. When
- dataloader.dataset does not exist or has no length, estimates as best it can
- """
- try:
- dataset = dataloader.dataset
- # Special case for IterableDatasetShard, we need to dig deeper
- if isinstance(dataset, IterableDatasetShard):
- return len(dataloader.dataset.dataset)
- return len(dataloader.dataset)
- except (NameError, AttributeError, TypeError): # no dataset or length, estimate by length of dataloader
- return len(dataloader) * self.args.per_device_train_batch_size
-
- def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
- """HP search setup code"""
- self._trial = trial
-
- if self.hp_search_backend is None or trial is None:
- return
- if self.hp_search_backend == HPSearchBackend.OPTUNA:
- params = self.hp_space(trial)
- elif self.hp_search_backend == HPSearchBackend.RAY:
- params = trial
- params.pop("wandb", None)
- elif self.hp_search_backend == HPSearchBackend.SIGOPT:
- params = {k: int(v) if isinstance(v, str) else v for k, v in trial.assignments.items()}
- elif self.hp_search_backend == HPSearchBackend.WANDB:
- params = trial
-
- for key, value in params.items():
- if not hasattr(self.args, key):
- logger.warning(
- f"Trying to set {key} in the hyperparameter search but there is no corresponding field in"
- " `TrainingArguments`."
- )
- continue
- old_attr = getattr(self.args, key, None)
- # Casting value to the proper type
- if old_attr is not None:
- value = type(old_attr)(value)
- setattr(self.args, key, value)
- if self.hp_search_backend == HPSearchBackend.OPTUNA:
- logger.info(f"Trial: {trial.params}")
- if self.hp_search_backend == HPSearchBackend.SIGOPT:
- logger.info(f"SigOpt Assignments: {trial.assignments}")
- if self.hp_search_backend == HPSearchBackend.WANDB:
- logger.info(f"W&B Sweep parameters: {trial}")
- if self.args.deepspeed:
- # Rebuild the deepspeed config to reflect the updated training parameters
- from transformers.deepspeed import HfTrainerDeepSpeedConfig
-
- self.args.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.args.deepspeed)
- self.args.hf_deepspeed_config.trainer_config_process(self.args)
-
- def _report_to_hp_search(self, trial: Union["optuna.Trial", Dict[str, Any]], step: int, metrics: Dict[str, float]):
- if self.hp_search_backend is None or trial is None:
- return
- self.objective = self.compute_objective(metrics.copy())
- if self.hp_search_backend == HPSearchBackend.OPTUNA:
- import optuna
-
- trial.report(self.objective, step)
- if trial.should_prune():
- self.callback_handler.on_train_end(self.args, self.state, self.control)
- raise optuna.TrialPruned()
- elif self.hp_search_backend == HPSearchBackend.RAY:
- from ray import tune
-
- if self.control.should_save:
- self._tune_save_checkpoint()
- tune.report(objective=self.objective, **metrics)
-
- def _tune_save_checkpoint(self):
- from ray import tune
-
- if not self.use_tune_checkpoints:
- return
- with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
- output_dir = os.path.join(checkpoint_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}")
- self.save_model(output_dir, _internal_call=True)
- if self.args.should_save:
- self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
- torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
- torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
-
- def call_model_init(self, trial=None):
- model_init_argcount = number_of_arguments(self.model_init)
- if model_init_argcount == 0:
- model = self.model_init()
- elif model_init_argcount == 1:
- model = self.model_init(trial)
- else:
- raise RuntimeError("model_init should have 0 or 1 argument.")
-
- if model is None:
- raise RuntimeError("model_init should not return None.")
-
- return model
-
- def torch_jit_model_eval(self, model, dataloader, training=False):
- if not training:
- if dataloader is None:
- logger.warning("failed to use PyTorch jit mode due to current dataloader is none.")
- return model
- example_batch = next(iter(dataloader))
- example_batch = self._prepare_inputs(example_batch)
- try:
- jit_model = model.eval()
- with ContextManagers([self.autocast_smart_context_manager(cache_enabled=False), torch.no_grad()]):
- if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.14.0"):
- if isinstance(example_batch, dict):
- jit_model = torch.jit.trace(jit_model, example_kwarg_inputs=example_batch, strict=False)
- else:
- jit_model = torch.jit.trace(
- jit_model,
- example_kwarg_inputs={key: example_batch[key] for key in example_batch},
- strict=False,
- )
- else:
- jit_inputs = []
- for key in example_batch:
- example_tensor = torch.ones_like(example_batch[key])
- jit_inputs.append(example_tensor)
- jit_inputs = tuple(jit_inputs)
- jit_model = torch.jit.trace(jit_model, jit_inputs, strict=False)
- jit_model = torch.jit.freeze(jit_model)
- with torch.no_grad():
- jit_model(**example_batch)
- jit_model(**example_batch)
- model = jit_model
- self.use_cpu_amp = False
- self.use_cuda_amp = False
- except (RuntimeError, TypeError, ValueError, NameError, IndexError) as e:
- logger.warning(f"failed to use PyTorch jit mode due to: {e}.")
-
- return model
-
- def ipex_optimize_model(self, model, training=False, dtype=torch.float32):
- if not is_ipex_available():
- raise ImportError(
- "Using IPEX but IPEX is not installed or IPEX's version does not match current PyTorch, please refer"
- " to https://github.com/intel/intel-extension-for-pytorch."
- )
-
- import intel_extension_for_pytorch as ipex
-
- if not training:
- model.eval()
- dtype = torch.bfloat16 if not self.is_in_train and self.args.bf16_full_eval else dtype
- # conv_bn_folding is disabled as it fails in symbolic tracing, resulting in ipex warnings
- model = ipex.optimize(model, dtype=dtype, level="O1", conv_bn_folding=False, inplace=not self.is_in_train)
- else:
- if not model.training:
- model.train()
- model, self.optimizer = ipex.optimize(
- model, dtype=dtype, optimizer=self.optimizer, inplace=True, level="O1"
- )
-
- return model
-
- def _wrap_model(self, model, training=True, dataloader=None):
- if self.args.torch_compile:
- model = torch.compile(model, backend=self.args.torch_compile_backend, mode=self.args.torch_compile_mode)
-
- if self.args.use_ipex:
- dtype = torch.bfloat16 if self.use_cpu_amp else torch.float32
- model = self.ipex_optimize_model(model, training, dtype=dtype)
-
- if is_sagemaker_mp_enabled():
- # Wrapping the base model twice in a DistributedModel will raise an error.
- if isinstance(self.model_wrapped, smp.model.DistributedModel):
- return self.model_wrapped
- return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps)
-
- # already initialized its own DDP and AMP
- if self.deepspeed:
- return self.deepspeed
-
- # train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
- if unwrap_model(model) is not model:
- return model
-
- # Mixed precision training with apex (torch < 1.6)
- if self.use_apex and training:
- model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)
-
- # Multi-gpu training (should be after apex fp16 initialization)
- if self.args.n_gpu > 1:
- model = nn.DataParallel(model)
-
- if self.args.jit_mode_eval:
- start_time = time.time()
- model = self.torch_jit_model_eval(model, dataloader, training)
- self.jit_compilation_time = round(time.time() - start_time, 4)
-
- # Note: in torch.distributed mode, there's no point in wrapping the model
- # inside a DistributedDataParallel as we'll be under `no_grad` anyways.
- if not training:
- return model
-
- # Distributed training (should be after apex fp16 initialization)
- if self.sharded_ddp is not None:
- # Sharded DDP!
- if self.sharded_ddp == ShardedDDPOption.SIMPLE:
- model = ShardedDDP(model, self.optimizer)
- else:
- mixed_precision = self.args.fp16 or self.args.bf16
- cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
- zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
- # XXX: Breaking the self.model convention but I see no way around it for now.
- if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
- model = auto_wrap(model)
- self.model = model = FullyShardedDDP(
- model,
- mixed_precision=mixed_precision,
- reshard_after_forward=zero_3,
- cpu_offload=cpu_offload,
- ).to(self.args.device)
- # Distributed training using PyTorch FSDP
- elif self.fsdp is not None:
- if not self.args.fsdp_config["xla"]:
- # PyTorch FSDP!
- from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision
- from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
- from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy
-
- if FSDPOption.OFFLOAD in self.args.fsdp:
- cpu_offload = CPUOffload(offload_params=True)
- else:
- cpu_offload = CPUOffload(offload_params=False)
-
- auto_wrap_policy = None
-
- if FSDPOption.AUTO_WRAP in self.args.fsdp:
- if self.args.fsdp_config["fsdp_min_num_params"] > 0:
- auto_wrap_policy = functools.partial(
- size_based_auto_wrap_policy, min_num_params=self.args.fsdp_config["fsdp_min_num_params"]
- )
- elif self.args.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
- transformer_cls_to_wrap = set()
- for layer_class in self.args.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]:
- transformer_cls = get_module_class_from_name(model, layer_class)
- if transformer_cls is None:
- raise Exception("Could not find the transformer layer class to wrap in the model.")
- else:
- transformer_cls_to_wrap.add(transformer_cls)
- auto_wrap_policy = functools.partial(
- transformer_auto_wrap_policy,
- # Transformer layer class to wrap
- transformer_layer_cls=transformer_cls_to_wrap,
- )
- mixed_precision_policy = None
- dtype = None
- if self.args.fp16:
- dtype = torch.float16
- elif self.args.bf16:
- dtype = torch.bfloat16
- if dtype is not None:
- mixed_precision_policy = MixedPrecision(param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=dtype)
- if type(model) != FSDP:
- # XXX: Breaking the self.model convention but I see no way around it for now.
- self.model = model = FSDP(
- model,
- sharding_strategy=self.fsdp,
- cpu_offload=cpu_offload,
- auto_wrap_policy=auto_wrap_policy,
- mixed_precision=mixed_precision_policy,
- device_id=self.args.device,
- backward_prefetch=self.backward_prefetch,
- forward_prefetch=self.forword_prefetch,
- limit_all_gathers=self.limit_all_gathers,
- )
- else:
- try:
- from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as FSDP
- from torch_xla.distributed.fsdp import checkpoint_module
- from torch_xla.distributed.fsdp.wrap import (
- size_based_auto_wrap_policy,
- transformer_auto_wrap_policy,
- )
- except ImportError:
- raise ImportError("Missing XLA FSDP related module; please make sure to use torch-xla >= 2.0.")
- auto_wrap_policy = None
- auto_wrapper_callable = None
- if self.args.fsdp_config["fsdp_min_num_params"] > 0:
- auto_wrap_policy = functools.partial(
- size_based_auto_wrap_policy, min_num_params=self.args.fsdp_config["fsdp_min_num_params"]
- )
- elif self.args.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
- transformer_cls_to_wrap = set()
- for layer_class in self.args.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]:
- transformer_cls = get_module_class_from_name(model, layer_class)
- if transformer_cls is None:
- raise Exception("Could not find the transformer layer class to wrap in the model.")
- else:
- transformer_cls_to_wrap.add(transformer_cls)
- auto_wrap_policy = functools.partial(
- transformer_auto_wrap_policy,
- # Transformer layer class to wrap
- transformer_layer_cls=transformer_cls_to_wrap,
- )
- fsdp_kwargs = self.args.xla_fsdp_config
- if self.args.fsdp_config["xla_fsdp_grad_ckpt"]:
- # Apply gradient checkpointing to auto-wrapped sub-modules if specified
- def auto_wrapper_callable(m, *args, **kwargs):
- return FSDP(checkpoint_module(m), *args, **kwargs)
-
- # Wrap the base model with an outer FSDP wrapper
- self.model = model = FSDP(
- model,
- auto_wrap_policy=auto_wrap_policy,
- auto_wrapper_callable=auto_wrapper_callable,
- **fsdp_kwargs,
- )
-
- # Patch `xm.optimizer_step` should not reduce gradients in this case,
- # as FSDP does not need gradient reduction over sharded parameters.
- def patched_optimizer_step(optimizer, barrier=False, optimizer_args={}):
- loss = optimizer.step(**optimizer_args)
- if barrier:
- xm.mark_step()
- return loss
-
- xm.optimizer_step = patched_optimizer_step
- elif is_sagemaker_dp_enabled():
- model = nn.parallel.DistributedDataParallel(
- model, device_ids=[int(os.getenv("SMDATAPARALLEL_LOCAL_RANK"))]
- )
- elif self.args.local_rank != -1:
- kwargs = {}
- if self.args.ddp_find_unused_parameters is not None:
- kwargs["find_unused_parameters"] = self.args.ddp_find_unused_parameters
- elif isinstance(model, PreTrainedModel):
- # find_unused_parameters breaks checkpointing as per
- # https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
- kwargs["find_unused_parameters"] = not model.is_gradient_checkpointing
- else:
- kwargs["find_unused_parameters"] = True
-
- if self.args.ddp_bucket_cap_mb is not None:
- kwargs["bucket_cap_mb"] = self.args.ddp_bucket_cap_mb
- if is_torch_neuroncore_available():
- return model
- model = nn.parallel.DistributedDataParallel(
- model,
- device_ids=[self.args.local_rank] if self.args._n_gpu != 0 else None,
- output_device=self.args.local_rank if self.args._n_gpu != 0 else None,
- **kwargs,
- )
-
- return model
-
- def train(
- self,
- resume_from_checkpoint: Optional[Union[str, bool]] = None,
- trial: Union["optuna.Trial", Dict[str, Any]] = None,
- ignore_keys_for_eval: Optional[List[str]] = None,
- **kwargs,
- ):
- """
- Main training entry point.
-
- Args:
- resume_from_checkpoint (`str` or `bool`, *optional*):
- If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a
- `bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance
- of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here.
- trial (`optuna.Trial` or `Dict[str, Any]`, *optional*):
- The trial run or the hyperparameter dictionary for hyperparameter search.
- ignore_keys_for_eval (`List[str]`, *optional*)
- A list of keys in the output of your model (if it is a dictionary) that should be ignored when
- gathering predictions for evaluation during the training.
- kwargs:
- Additional keyword arguments used to hide deprecated arguments
- """
- if resume_from_checkpoint is False:
- resume_from_checkpoint = None
-
- # memory metrics - must set up as early as possible
- self._memory_tracker.start()
-
- args = self.args
-
- self.is_in_train = True
-
- # do_train is not a reliable argument, as it might not be set and .train() still called, so
- # the following is a workaround:
- if (args.fp16_full_eval or args.bf16_full_eval) and not args.do_train:
- self._move_model_to_device(self.model, args.device)
-
- if "model_path" in kwargs:
- resume_from_checkpoint = kwargs.pop("model_path")
- warnings.warn(
- "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
- "instead.",
- FutureWarning,
- )
- if len(kwargs) > 0:
- raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
- # This might change the seed so needs to run first.
- self._hp_search_setup(trial)
- self._train_batch_size = self.args.train_batch_size
-
- # Model re-init
- model_reloaded = False
- if self.model_init is not None:
- # Seed must be set before instantiating the model when using model_init.
- enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
- self.model = self.call_model_init(trial)
- model_reloaded = True
- # Reinitializes optimizer and scheduler
- self.optimizer, self.lr_scheduler = None, None
-
- # Load potential model checkpoint
- if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
- resume_from_checkpoint = get_last_checkpoint(args.output_dir)
- if resume_from_checkpoint is None:
- raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")
-
- if resume_from_checkpoint is not None and not is_sagemaker_mp_enabled() and args.deepspeed is None:
- self._load_from_checkpoint(resume_from_checkpoint)
-
- # If model was re-initialized, put it on the right device and update self.model_wrapped
- if model_reloaded:
- if self.place_model_on_device:
- self._move_model_to_device(self.model, args.device)
- self.model_wrapped = self.model
-
- inner_training_loop = find_executable_batch_size(
- self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
- )
- return inner_training_loop(
- args=args,
- resume_from_checkpoint=resume_from_checkpoint,
- trial=trial,
- ignore_keys_for_eval=ignore_keys_for_eval,
- )
-
- def _inner_training_loop(
- self, batch_size=None, args=None, resume_from_checkpoint=None, trial=None, ignore_keys_for_eval=None
- ):
- self._train_batch_size = batch_size
- # Data loader and number of training steps
- train_dataloader = self.get_train_dataloader()
-
- # Setting up training control variables:
- # number of training epochs: num_train_epochs
- # number of training steps per epoch: num_update_steps_per_epoch
- # total number of training steps to execute: max_steps
- total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * args.world_size
-
- len_dataloader = None
- if has_length(train_dataloader):
- len_dataloader = len(train_dataloader)
- num_update_steps_per_epoch = len_dataloader // args.gradient_accumulation_steps
- num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
- num_examples = self.num_examples(train_dataloader)
- if args.max_steps > 0:
- max_steps = args.max_steps
- num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
- args.max_steps % num_update_steps_per_epoch > 0
- )
- # May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
- # the best we can do.
- num_train_samples = args.max_steps * total_train_batch_size
- else:
- max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch)
- num_train_epochs = math.ceil(args.num_train_epochs)
- num_train_samples = self.num_examples(train_dataloader) * args.num_train_epochs
- elif args.max_steps > 0: # Rely on max_steps when dataloader does not have a working size
- max_steps = args.max_steps
- # Setting a very large number of epochs so we go as many times as necessary over the iterator.
- num_train_epochs = sys.maxsize
- num_update_steps_per_epoch = max_steps
- num_examples = total_train_batch_size * args.max_steps
- num_train_samples = args.max_steps * total_train_batch_size
- else:
- raise ValueError(
- "args.max_steps must be set to a positive value if dataloader does not have a length, was"
- f" {args.max_steps}"
- )
-
- if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
- if self.args.n_gpu > 1:
- # nn.DataParallel(model) replicates the model, creating new variables and module
- # references registered here no longer work on other gpus, breaking the module
- raise ValueError(
- "Currently --debug underflow_overflow is not supported under DP. Please use DDP"
- " (torch.distributed.launch)."
- )
- else:
- debug_overflow = DebugUnderflowOverflow(self.model) # noqa
-
- delay_optimizer_creation = (
- self.sharded_ddp is not None
- and self.sharded_ddp != ShardedDDPOption.SIMPLE
- or is_sagemaker_mp_enabled()
- or self.fsdp is not None
- )
- if args.deepspeed:
- deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
- self, num_training_steps=max_steps, resume_from_checkpoint=resume_from_checkpoint
- )
- self.model = deepspeed_engine.module
- self.model_wrapped = deepspeed_engine
- self.deepspeed = deepspeed_engine
- self.optimizer = optimizer
- self.lr_scheduler = lr_scheduler
- elif not delay_optimizer_creation:
- self.create_optimizer_and_scheduler(num_training_steps=max_steps)
-
- self.state = TrainerState()
- self.state.is_hyper_param_search = trial is not None
-
- # Activate gradient checkpointing if needed
- if args.gradient_checkpointing:
- self.model.gradient_checkpointing_enable()
-
- model = self._wrap_model(self.model_wrapped)
-
- if is_sagemaker_mp_enabled() and resume_from_checkpoint is not None:
- self._load_from_checkpoint(resume_from_checkpoint, model)
-
- # for the rest of this function `model` is the outside model, whether it was wrapped or not
- if model is not self.model:
- self.model_wrapped = model
-
- if delay_optimizer_creation:
- self.create_optimizer_and_scheduler(num_training_steps=max_steps)
-
- # Check if saved optimizer or scheduler states exist
- self._load_optimizer_and_scheduler(resume_from_checkpoint)
-
- # important: at this point:
- # self.model is the Transformers Model
- # self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
-
- # Train!
- logger.info("***** Running training *****")
- logger.info(f" Num examples = {num_examples}")
- logger.info(f" Num Epochs = {num_train_epochs}")
- logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
- logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
- logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
- logger.info(f" Total optimization steps = {max_steps}")
- logger.info(
- f" Number of trainable parameters = {sum(p.numel() for p in model.parameters() if p.requires_grad)}"
- )
-
- self.state.epoch = 0
- start_time = time.time()
- epochs_trained = 0
- steps_trained_in_current_epoch = 0
- steps_trained_progress_bar = None
-
- # Check if continuing training from a checkpoint
- if resume_from_checkpoint is not None and os.path.isfile(
- os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
- ):
- self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
- epochs_trained = self.state.global_step // num_update_steps_per_epoch
- if not args.ignore_data_skip:
- steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
- steps_trained_in_current_epoch *= args.gradient_accumulation_steps
- else:
- steps_trained_in_current_epoch = 0
-
- logger.info(" Continuing training from checkpoint, will skip to saved global_step")
- logger.info(f" Continuing training from epoch {epochs_trained}")
- logger.info(f" Continuing training from global step {self.state.global_step}")
- if not args.ignore_data_skip:
- if skip_first_batches is None:
- logger.info(
- f" Will skip the first {epochs_trained} epochs then the first"
- f" {steps_trained_in_current_epoch} batches in the first epoch. If this takes a lot of time,"
- " you can install the latest version of Accelerate with `pip install -U accelerate`.You can"
- " also add the `--ignore_data_skip` flag to your launch command, but you will resume the"
- " training on data already seen by your model."
- )
- else:
- logger.info(
- f" Will skip the first {epochs_trained} epochs then the first"
- f" {steps_trained_in_current_epoch} batches in the first epoch."
- )
- if self.is_local_process_zero() and not args.disable_tqdm and skip_first_batches is None:
- steps_trained_progress_bar = tqdm(total=steps_trained_in_current_epoch)
- steps_trained_progress_bar.set_description("Skipping the first batches")
-
- # Update the references
- self.callback_handler.model = self.model
- self.callback_handler.optimizer = self.optimizer
- self.callback_handler.lr_scheduler = self.lr_scheduler
- self.callback_handler.train_dataloader = train_dataloader
- if self.hp_name is not None and self._trial is not None:
- # use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial
- # parameter to Train when using DDP.
- self.state.trial_name = self.hp_name(self._trial)
- if trial is not None:
- assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial
- self.state.trial_params = hp_params(assignments)
- else:
- self.state.trial_params = None
- # This should be the same if the state has been saved but in case the training arguments changed, it's safer
- # to set this after the load.
- self.state.max_steps = max_steps
- self.state.num_train_epochs = num_train_epochs
- self.state.is_local_process_zero = self.is_local_process_zero()
- self.state.is_world_process_zero = self.is_world_process_zero()
-
- # tr_loss is a tensor to avoid synchronization of TPUs through .item()
- tr_loss = torch.tensor(0.0).to(args.device)
- # _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
- self._total_loss_scalar = 0.0
- self._globalstep_last_logged = self.state.global_step
- model.zero_grad()
-
- self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
-
- # Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
- if not args.ignore_data_skip:
- for epoch in range(epochs_trained):
- is_random_sampler = hasattr(train_dataloader, "sampler") and isinstance(
- train_dataloader.sampler, RandomSampler
- )
- if is_torch_less_than_1_11 or not is_random_sampler:
- # We just need to begin an iteration to create the randomization of the sampler.
- # That was before PyTorch 1.11 however...
- for _ in train_dataloader:
- break
- else:
- # Otherwise we need to call the whooooole sampler cause there is some random operation added
- # AT THE VERY END!
- _ = list(train_dataloader.sampler)
-
- total_batched_samples = 0
- for epoch in range(epochs_trained, num_train_epochs):
- if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
- train_dataloader.sampler.set_epoch(epoch)
- elif hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDatasetShard):
- train_dataloader.dataset.set_epoch(epoch)
-
- if is_torch_tpu_available():
- parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
- epoch_iterator = parallel_loader
- else:
- epoch_iterator = train_dataloader
-
- # Reset the past mems state at the beginning of each epoch if necessary.
- if args.past_index >= 0:
- self._past = None
-
- steps_in_epoch = (
- len(epoch_iterator)
- if len_dataloader is not None
- else args.max_steps * args.gradient_accumulation_steps
- )
- self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control)
-
- if epoch == epochs_trained and resume_from_checkpoint is not None and steps_trained_in_current_epoch == 0:
- self._load_rng_state(resume_from_checkpoint)
-
- rng_to_sync = False
- steps_skipped = 0
- if skip_first_batches is not None and steps_trained_in_current_epoch > 0:
- epoch_iterator = skip_first_batches(epoch_iterator, steps_trained_in_current_epoch)
- steps_skipped = steps_trained_in_current_epoch
- steps_trained_in_current_epoch = 0
- rng_to_sync = True
-
- step = -1
- for step, inputs in enumerate(epoch_iterator):
- total_batched_samples += 1
- if rng_to_sync:
- self._load_rng_state(resume_from_checkpoint)
- rng_to_sync = False
-
- # Skip past any already trained steps if resuming training
- if steps_trained_in_current_epoch > 0:
- steps_trained_in_current_epoch -= 1
- if steps_trained_progress_bar is not None:
- steps_trained_progress_bar.update(1)
- if steps_trained_in_current_epoch == 0:
- self._load_rng_state(resume_from_checkpoint)
- continue
- elif steps_trained_progress_bar is not None:
- steps_trained_progress_bar.close()
- steps_trained_progress_bar = None
-
- if step % args.gradient_accumulation_steps == 0:
- self.control = self.callback_handler.on_step_begin(args, self.state, self.control)
-
- if (
- (total_batched_samples % args.gradient_accumulation_steps != 0)
- and args.local_rank != -1
- and args._no_sync_in_gradient_accumulation
- ):
- # Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
- with model.no_sync():
- tr_loss_step = self.training_step(model, inputs)
- else:
- tr_loss_step = self.training_step(model, inputs)
-
- if (
- args.logging_nan_inf_filter
- and not is_torch_tpu_available()
- and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
- ):
- # if loss is nan or inf simply add the average of previous logged losses
- tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged)
- else:
- tr_loss += tr_loss_step
-
- self.current_flos += float(self.floating_point_ops(inputs))
-
- # Optimizer step for deepspeed must be called on every step regardless of the value of gradient_accumulation_steps
- if self.deepspeed:
- self.deepspeed.step()
-
- if total_batched_samples % args.gradient_accumulation_steps == 0 or (
- # last step in epoch but step is always smaller than gradient_accumulation_steps
- steps_in_epoch <= args.gradient_accumulation_steps
- and (step + 1) == steps_in_epoch
- ):
- # Gradient clipping
- if args.max_grad_norm is not None and args.max_grad_norm > 0 and not self.deepspeed:
- # deepspeed does its own clipping
-
- if self.do_grad_scaling:
- # Reduce gradients first for XLA
- if is_torch_tpu_available():
- gradients = xm._fetch_gradients(self.optimizer)
- xm.all_reduce("sum", gradients, scale=1.0 / xm.xrt_world_size())
- # AMP: gradients need unscaling
- self.scaler.unscale_(self.optimizer)
-
- if is_sagemaker_mp_enabled() and args.fp16:
- self.optimizer.clip_master_grads(args.max_grad_norm)
- elif hasattr(self.optimizer, "clip_grad_norm"):
- # Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
- self.optimizer.clip_grad_norm(args.max_grad_norm)
- elif hasattr(model, "clip_grad_norm_"):
- # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
- model.clip_grad_norm_(args.max_grad_norm)
- else:
- # Revert to normal clipping otherwise, handling Apex or full precision
- nn.utils.clip_grad_norm_(
- amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
- args.max_grad_norm,
- )
-
- # Optimizer step
- optimizer_was_run = True
- if self.deepspeed:
- pass # called outside the loop
- elif is_torch_tpu_available():
- if self.do_grad_scaling:
- self.scaler.step(self.optimizer)
- self.scaler.update()
- else:
- xm.optimizer_step(self.optimizer)
- elif self.do_grad_scaling:
- scale_before = self.scaler.get_scale()
- self.scaler.step(self.optimizer)
- self.scaler.update()
- scale_after = self.scaler.get_scale()
- optimizer_was_run = scale_before <= scale_after
- else:
- self.optimizer.step()
-
- if optimizer_was_run and not self.deepspeed:
- self.lr_scheduler.step()
-
- model.zero_grad()
- self.state.global_step += 1
- self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch
- self.control = self.callback_handler.on_step_end(args, self.state, self.control)
-
- self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
- else:
- self.control = self.callback_handler.on_substep_end(args, self.state, self.control)
-
- if self.control.should_epoch_stop or self.control.should_training_stop:
- break
- if step < 0:
- logger.warning(
- "There seems to be not a single sample in your epoch_iterator, stopping training at step"
- f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
- f" num_steps ({max_steps}) higher than the number of available samples."
- )
- self.control.should_training_stop = True
-
- self.control = self.callback_handler.on_epoch_end(args, self.state, self.control)
- self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval)
-
- if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
- if is_torch_tpu_available():
- # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
- xm.master_print(met.metrics_report())
- else:
- logger.warning(
- "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
- "configured. Check your training configuration if this is unexpected."
- )
- if self.control.should_training_stop:
- break
-
- if args.past_index and hasattr(self, "_past"):
- # Clean the state at the end of training
- delattr(self, "_past")
-
- logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
- if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
- # Wait for everyone to get here so we are sur the model has been saved by process 0.
- if is_torch_tpu_available():
- xm.rendezvous("load_best_model_at_end")
- elif args.local_rank != -1:
- dist.barrier()
- elif is_sagemaker_mp_enabled():
- smp.barrier()
-
- self._load_best_model()
-
- # add remaining tr_loss
- self._total_loss_scalar += tr_loss.item()
- train_loss = self._total_loss_scalar / self.state.global_step
-
- metrics = speed_metrics("train", start_time, num_samples=num_train_samples, num_steps=self.state.max_steps)
- self.store_flos()
- metrics["total_flos"] = self.state.total_flos
- metrics["train_loss"] = train_loss
-
- self.is_in_train = False
-
- self._memory_tracker.stop_and_update_metrics(metrics)
-
- self.log(metrics)
-
- run_dir = self._get_output_dir(trial)
- checkpoints_sorted = self._sorted_checkpoints(use_mtime=False, output_dir=run_dir)
-
- # Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save.
- if self.args.should_save and self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1:
- for checkpoint in checkpoints_sorted:
- if checkpoint != self.state.best_model_checkpoint:
- logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
- shutil.rmtree(checkpoint)
-
- self.control = self.callback_handler.on_train_end(args, self.state, self.control)
-
- return TrainOutput(self.state.global_step, train_loss, metrics)
-
- def _get_output_dir(self, trial):
- if self.hp_search_backend is not None and trial is not None:
- if self.hp_search_backend == HPSearchBackend.OPTUNA:
- run_id = trial.number
- elif self.hp_search_backend == HPSearchBackend.RAY:
- from ray import tune
-
- run_id = tune.get_trial_id()
- elif self.hp_search_backend == HPSearchBackend.SIGOPT:
- run_id = trial.id
- elif self.hp_search_backend == HPSearchBackend.WANDB:
- import wandb
-
- run_id = wandb.run.id
- run_name = self.hp_name(trial) if self.hp_name is not None else f"run-{run_id}"
- run_dir = os.path.join(self.args.output_dir, run_name)
- else:
- run_dir = self.args.output_dir
- return run_dir
-
- def _load_from_checkpoint(self, resume_from_checkpoint, model=None):
- if model is None:
- model = self.model
-
- if not os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)) and not os.path.isfile(
- os.path.join(resume_from_checkpoint, WEIGHTS_INDEX_NAME)
- ):
- raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")
-
- logger.info(f"Loading model from {resume_from_checkpoint}.")
-
- if os.path.isfile(os.path.join(resume_from_checkpoint, CONFIG_NAME)):
- config = PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
- checkpoint_version = config.transformers_version
- if checkpoint_version is not None and checkpoint_version != __version__:
- logger.warning(
- f"You are resuming training from a checkpoint trained with {checkpoint_version} of "
- f"Transformers but your current version is {__version__}. This is not recommended and could "
- "yield to errors or unwanted behaviors."
- )
-
- if os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
- # If the model is on the GPU, it still works!
- if is_sagemaker_mp_enabled():
- if os.path.isfile(os.path.join(resume_from_checkpoint, "user_content.pt")):
- # If the 'user_content.pt' file exists, load with the new smp api.
- # Checkpoint must have been saved with the new smp api.
- smp.resume_from_checkpoint(
- path=resume_from_checkpoint, tag=WEIGHTS_NAME, partial=False, load_optimizer=False
- )
- else:
- # If the 'user_content.pt' file does NOT exist, load with the old smp api.
- # Checkpoint must have been saved with the old smp api.
- if hasattr(self.args, "fp16") and self.args.fp16 is True:
- logger.warning(
- "Enabling FP16 and loading from smp < 1.10 checkpoint together is not suppported."
- )
- state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu")
- # Required for smp to not auto-translate state_dict from hf to smp (is already smp).
- state_dict["_smp_is_partial"] = False
- load_result = model.load_state_dict(state_dict, strict=True)
- # release memory
- del state_dict
- else:
- # We load the model state dict on the CPU to avoid an OOM error.
- state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME), map_location="cpu")
- # workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
- # which takes *args instead of **kwargs
- load_result = model.load_state_dict(state_dict, False)
- # release memory
- del state_dict
- self._issue_warnings_after_load(load_result)
- else:
- # We load the sharded checkpoint
- load_result = load_sharded_checkpoint(model, resume_from_checkpoint, strict=is_sagemaker_mp_enabled())
- if not is_sagemaker_mp_enabled():
- self._issue_warnings_after_load(load_result)
-
- def _load_best_model(self):
- logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).")
- best_model_path = os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME)
- model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
- if os.path.exists(best_model_path):
- if self.deepspeed:
- if self.model_wrapped is not None:
- # this removes the pre-hooks from the previous engine
- self.model_wrapped.destroy()
- self.model_wrapped = None
-
- # temp hack until Deepspeed fixes the problem with resume from an existing engine that did some stepping
- deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
- self,
- num_training_steps=self.args.max_steps,
- resume_from_checkpoint=self.state.best_model_checkpoint,
- )
- self.model = deepspeed_engine.module
- self.model_wrapped = deepspeed_engine
- self.deepspeed = deepspeed_engine
- self.optimizer = optimizer
- self.lr_scheduler = lr_scheduler
- else:
- if is_sagemaker_mp_enabled():
- if os.path.isfile(os.path.join(self.state.best_model_checkpoint, "user_content.pt")):
- # If the 'user_content.pt' file exists, load with the new smp api.
- # Checkpoint must have been saved with the new smp api.
- smp.resume_from_checkpoint(
- path=self.state.best_model_checkpoint,
- tag=WEIGHTS_NAME,
- partial=False,
- load_optimizer=False,
- )
- else:
- # If the 'user_content.pt' file does NOT exist, load with the old smp api.
- # Checkpoint must have been saved with the old smp api.
- state_dict = torch.load(best_model_path, map_location="cpu")
- state_dict["_smp_is_partial"] = False
- load_result = model.load_state_dict(state_dict, strict=True)
- else:
- # We load the model state dict on the CPU to avoid an OOM error.
- state_dict = torch.load(best_model_path, map_location="cpu")
- # If the model is on the GPU, it still works!
- # workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
- # which takes *args instead of **kwargs
- load_result = model.load_state_dict(state_dict, False)
- if not is_sagemaker_mp_enabled():
- self._issue_warnings_after_load(load_result)
- elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)):
- load_result = load_sharded_checkpoint(
- model, self.state.best_model_checkpoint, strict=is_sagemaker_mp_enabled()
- )
- if not is_sagemaker_mp_enabled():
- self._issue_warnings_after_load(load_result)
- else:
- logger.warning(
- f"Could not locate the best model at {best_model_path}, if you are running a distributed training "
- "on multiple nodes, you should activate `--save_on_each_node`."
- )
-
- def _issue_warnings_after_load(self, load_result):
- if len(load_result.missing_keys) != 0:
- if self.model._keys_to_ignore_on_save is not None and set(load_result.missing_keys) == set(
- self.model._keys_to_ignore_on_save
- ):
- self.model.tie_weights()
- else:
- logger.warning(f"There were missing keys in the checkpoint model loaded: {load_result.missing_keys}.")
- if len(load_result.unexpected_keys) != 0:
- logger.warning(
- f"There were unexpected keys in the checkpoint model loaded: {load_result.unexpected_keys}."
- )
-
- def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch, ignore_keys_for_eval):
- if self.control.should_log:
- if is_torch_tpu_available():
- xm.mark_step()
-
- logs: Dict[str, float] = {}
-
- # all_gather + mean() to get average loss over all processes
- tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
-
- # reset tr_loss to zero
- tr_loss -= tr_loss
-
- logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
- logs["learning_rate"] = self._get_learning_rate()
-
- self._total_loss_scalar += tr_loss_scalar
- self._globalstep_last_logged = self.state.global_step
- self.store_flos()
-
- self.log(logs)
-
- metrics = None
- if self.control.should_evaluate:
- if isinstance(self.eval_dataset, dict):
- for eval_dataset_name, eval_dataset in self.eval_dataset.items():
- metrics = self.evaluate(
- eval_dataset=eval_dataset,
- ignore_keys=ignore_keys_for_eval,
- metric_key_prefix=f"eval_{eval_dataset_name}",
- )
- else:
- metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
- self._report_to_hp_search(trial, self.state.global_step, metrics)
-
- if self.control.should_save:
- self._save_checkpoint(model, trial, metrics=metrics)
- self.control = self.callback_handler.on_save(self.args, self.state, self.control)
-
- def _load_rng_state(self, checkpoint):
- # Load RNG states from `checkpoint`
- if checkpoint is None:
- return
-
- if self.args.world_size > 1:
- process_index = self.args.process_index
- rng_file = os.path.join(checkpoint, f"rng_state_{process_index}.pth")
- if not os.path.isfile(rng_file):
- logger.info(
- f"Didn't find an RNG file for process {process_index}, if you are resuming a training that "
- "wasn't launched in a distributed fashion, reproducibility is not guaranteed."
- )
- return
- else:
- rng_file = os.path.join(checkpoint, "rng_state.pth")
- if not os.path.isfile(rng_file):
- logger.info(
- "Didn't find an RNG file, if you are resuming a training that was launched in a distributed "
- "fashion, reproducibility is not guaranteed."
- )
- return
-
- checkpoint_rng_state = torch.load(rng_file)
- random.setstate(checkpoint_rng_state["python"])
- np.random.set_state(checkpoint_rng_state["numpy"])
- torch.random.set_rng_state(checkpoint_rng_state["cpu"])
- if torch.cuda.is_available():
- if self.args.local_rank != -1:
- torch.cuda.random.set_rng_state(checkpoint_rng_state["cuda"])
- else:
- try:
- torch.cuda.random.set_rng_state_all(checkpoint_rng_state["cuda"])
- except Exception as e:
- logger.info(
- f"Didn't manage to set back the RNG states of the GPU because of the following error:\n {e}"
- "\nThis won't yield the same results as if the training had not been interrupted."
- )
- if is_torch_tpu_available():
- xm.set_rng_state(checkpoint_rng_state["xla"])
-
- def _save_checkpoint(self, model, trial, metrics=None):
- # In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
- # want to save except FullyShardedDDP.
- # assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
-
- # Save model checkpoint
- checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
-
- if self.hp_search_backend is None and trial is None:
- self.store_flos()
-
- run_dir = self._get_output_dir(trial=trial)
- output_dir = os.path.join(run_dir, checkpoint_folder)
- self.save_model(output_dir, _internal_call=True)
- if self.deepspeed:
- # under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed
- # config `stage3_gather_16bit_weights_on_model_save` is True
- self.deepspeed.save_checkpoint(output_dir)
-
- # Save optimizer and scheduler
- if self.sharded_ddp == ShardedDDPOption.SIMPLE:
- self.optimizer.consolidate_state_dict()
-
- if is_torch_tpu_available():
- xm.rendezvous("saving_optimizer_states")
- xm.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
- with warnings.catch_warnings(record=True) as caught_warnings:
- xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
- reissue_pt_warnings(caught_warnings)
- elif is_sagemaker_mp_enabled():
- opt_state_dict = self.optimizer.local_state_dict(gather_if_shard=False)
- smp.barrier()
- if smp.rdp_rank() == 0 or smp.state.cfg.shard_optimizer_state:
- smp.save(
- opt_state_dict,
- os.path.join(output_dir, OPTIMIZER_NAME),
- partial=True,
- v3=smp.state.cfg.shard_optimizer_state,
- )
- if self.args.should_save:
- with warnings.catch_warnings(record=True) as caught_warnings:
- torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
- reissue_pt_warnings(caught_warnings)
- if self.do_grad_scaling:
- torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
- elif self.args.should_save and not self.deepspeed:
- # deepspeed.save_checkpoint above saves model/optim/sched
- torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
- with warnings.catch_warnings(record=True) as caught_warnings:
- torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
- reissue_pt_warnings(caught_warnings)
- if self.do_grad_scaling:
- torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
-
- # Determine the new best metric / best model checkpoint
- if metrics is not None and self.args.metric_for_best_model is not None:
- metric_to_check = self.args.metric_for_best_model
- if not metric_to_check.startswith("eval_"):
- metric_to_check = f"eval_{metric_to_check}"
- metric_value = metrics[metric_to_check]
-
- operator = np.greater if self.args.greater_is_better else np.less
- if (
- self.state.best_metric is None
- or self.state.best_model_checkpoint is None
- or operator(metric_value, self.state.best_metric)
- ):
- self.state.best_metric = metric_value
- self.state.best_model_checkpoint = output_dir
-
- # Save the Trainer state
- if self.args.should_save:
- self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
-
- # Save RNG state in non-distributed training
- rng_states = {
- "python": random.getstate(),
- "numpy": np.random.get_state(),
- "cpu": torch.random.get_rng_state(),
- }
- if torch.cuda.is_available():
- if self.args.local_rank == -1:
- # In non distributed, we save the global CUDA RNG state (will take care of DataParallel)
- rng_states["cuda"] = torch.cuda.random.get_rng_state_all()
- else:
- rng_states["cuda"] = torch.cuda.random.get_rng_state()
-
- if is_torch_tpu_available():
- rng_states["xla"] = xm.get_rng_state()
-
- # A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may
- # not yet exist.
- os.makedirs(output_dir, exist_ok=True)
-
- if self.args.world_size <= 1:
- torch.save(rng_states, os.path.join(output_dir, "rng_state.pth"))
- else:
- torch.save(rng_states, os.path.join(output_dir, f"rng_state_{self.args.process_index}.pth"))
-
- if self.args.push_to_hub:
- self._push_from_checkpoint(output_dir)
-
- # Maybe delete some older checkpoints.
- if self.args.should_save:
- self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)
-
- def _load_optimizer_and_scheduler(self, checkpoint):
- """If optimizer and scheduler states exist, load them."""
- if checkpoint is None:
- return
-
- if self.deepspeed:
- # deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init
- return
-
- checkpoint_file_exists = (
- glob.glob(os.path.join(checkpoint, OPTIMIZER_NAME) + "_*")
- if is_sagemaker_mp_enabled()
- else os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME))
- )
- if checkpoint_file_exists and os.path.isfile(os.path.join(checkpoint, SCHEDULER_NAME)):
- # Load in optimizer and scheduler states
- if is_torch_tpu_available():
- # On TPU we have to take some extra precautions to properly load the states on the right device.
- optimizer_state = torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location="cpu")
- with warnings.catch_warnings(record=True) as caught_warnings:
- lr_scheduler_state = torch.load(os.path.join(checkpoint, SCHEDULER_NAME), map_location="cpu")
- reissue_pt_warnings(caught_warnings)
-
- xm.send_cpu_data_to_device(optimizer_state, self.args.device)
- xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)
-
- self.optimizer.load_state_dict(optimizer_state)
- self.lr_scheduler.load_state_dict(lr_scheduler_state)
- else:
- map_location = "cpu" if is_sagemaker_mp_enabled() else self.args.device
- if is_sagemaker_mp_enabled():
- if os.path.isfile(os.path.join(checkpoint, "user_content.pt")):
- # Optimizer checkpoint was saved with smp >= 1.10
- def opt_load_hook(mod, opt):
- opt.load_state_dict(smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True))
-
- else:
- # Optimizer checkpoint was saved with smp < 1.10
- def opt_load_hook(mod, opt):
- if IS_SAGEMAKER_MP_POST_1_10:
- opt.load_state_dict(
- smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True, back_compat=True)
- )
- else:
- opt.load_state_dict(smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True))
-
- self.model_wrapped.register_post_step_hook(opt_load_hook)
- else:
- self.optimizer.load_state_dict(
- torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location=map_location)
- )
- with warnings.catch_warnings(record=True) as caught_warnings:
- self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, SCHEDULER_NAME)))
- reissue_pt_warnings(caught_warnings)
- if self.do_grad_scaling and os.path.isfile(os.path.join(checkpoint, SCALER_NAME)):
- self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, SCALER_NAME)))
-
- def hyperparameter_search(
- self,
- hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
- compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
- n_trials: int = 20,
- direction: str = "minimize",
- backend: Optional[Union["str", HPSearchBackend]] = None,
- hp_name: Optional[Callable[["optuna.Trial"], str]] = None,
- **kwargs,
- ) -> BestRun:
- """
- Launch an hyperparameter search using `optuna` or `Ray Tune` or `SigOpt`. The optimized quantity is determined
- by `compute_objective`, which defaults to a function returning the evaluation loss when no metric is provided,
- the sum of all metrics otherwise.
-
-
-
- To use this method, you need to have provided a `model_init` when initializing your [`Trainer`]: we need to
- reinitialize the model at each new run. This is incompatible with the `optimizers` argument, so you need to
- subclass [`Trainer`] and override the method [`~Trainer.create_optimizer_and_scheduler`] for custom
- optimizer/scheduler.
-
-
-
- Args:
- hp_space (`Callable[["optuna.Trial"], Dict[str, float]]`, *optional*):
- A function that defines the hyperparameter search space. Will default to
- [`~trainer_utils.default_hp_space_optuna`] or [`~trainer_utils.default_hp_space_ray`] or
- [`~trainer_utils.default_hp_space_sigopt`] depending on your backend.
- compute_objective (`Callable[[Dict[str, float]], float]`, *optional*):
- A function computing the objective to minimize or maximize from the metrics returned by the `evaluate`
- method. Will default to [`~trainer_utils.default_compute_objective`].
- n_trials (`int`, *optional*, defaults to 100):
- The number of trial runs to test.
- direction (`str`, *optional*, defaults to `"minimize"`):
- Whether to optimize greater or lower objects. Can be `"minimize"` or `"maximize"`, you should pick
- `"minimize"` when optimizing the validation loss, `"maximize"` when optimizing one or several metrics.
- backend (`str` or [`~training_utils.HPSearchBackend`], *optional*):
- The backend to use for hyperparameter search. Will default to optuna or Ray Tune or SigOpt, depending
- on which one is installed. If all are installed, will default to optuna.
- hp_name (`Callable[["optuna.Trial"], str]]`, *optional*):
- A function that defines the trial/run name. Will default to None.
- kwargs (`Dict[str, Any]`, *optional*):
- Additional keyword arguments passed along to `optuna.create_study` or `ray.tune.run`. For more
- information see:
-
- - the documentation of
- [optuna.create_study](https://optuna.readthedocs.io/en/stable/reference/generated/optuna.study.create_study.html)
- - the documentation of [tune.run](https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run)
- - the documentation of [sigopt](https://app.sigopt.com/docs/endpoints/experiments/create)
-
- Returns:
- [`trainer_utils.BestRun`]: All the information about the best run. Experiment summary can be found in
- `run_summary` attribute for Ray backend.
- """
- if backend is None:
- backend = default_hp_search_backend()
- if backend is None:
- raise RuntimeError(
- "At least one of optuna or ray should be installed. "
- "To install optuna run `pip install optuna`. "
- "To install ray run `pip install ray[tune]`. "
- "To install sigopt run `pip install sigopt`."
- )
- backend = HPSearchBackend(backend)
- if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
- raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
- if backend == HPSearchBackend.RAY and not is_ray_tune_available():
- raise RuntimeError(
- "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
- )
- if backend == HPSearchBackend.SIGOPT and not is_sigopt_available():
- raise RuntimeError("You picked the sigopt backend, but it is not installed. Use `pip install sigopt`.")
- if backend == HPSearchBackend.WANDB and not is_wandb_available():
- raise RuntimeError("You picked the wandb backend, but it is not installed. Use `pip install wandb`.")
- self.hp_search_backend = backend
- if self.model_init is None:
- raise RuntimeError(
- "To use hyperparameter search, you need to pass your model through a model_init function."
- )
-
- self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
- self.hp_name = hp_name
- self.compute_objective = default_compute_objective if compute_objective is None else compute_objective
-
- backend_dict = {
- HPSearchBackend.OPTUNA: run_hp_search_optuna,
- HPSearchBackend.RAY: run_hp_search_ray,
- HPSearchBackend.SIGOPT: run_hp_search_sigopt,
- HPSearchBackend.WANDB: run_hp_search_wandb,
- }
- best_run = backend_dict[backend](self, n_trials, direction, **kwargs)
-
- self.hp_search_backend = None
- return best_run
-
- def log(self, logs: Dict[str, float]) -> None:
- """
- Log `logs` on the various objects watching training.
-
- Subclass and override this method to inject custom behavior.
-
- Args:
- logs (`Dict[str, float]`):
- The values to log.
- """
- if self.state.epoch is not None:
- logs["epoch"] = round(self.state.epoch, 2)
-
- output = {**logs, **{"step": self.state.global_step}}
- self.state.log_history.append(output)
- self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
-
- def _prepare_input(self, data: Union[torch.Tensor, Any]) -> Union[torch.Tensor, Any]:
- """
- Prepares one `data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
- """
- if isinstance(data, Mapping):
- return type(data)({k: self._prepare_input(v) for k, v in data.items()})
- elif isinstance(data, (tuple, list)):
- return type(data)(self._prepare_input(v) for v in data)
- elif isinstance(data, torch.Tensor):
- kwargs = {"device": self.args.device}
- if self.deepspeed and (torch.is_floating_point(data) or torch.is_complex(data)):
- # NLP models inputs are int/uint and those get adjusted to the right dtype of the
- # embedding. Other models such as wav2vec2's inputs are already float and thus
- # may need special handling to match the dtypes of the model
- kwargs.update({"dtype": self.args.hf_deepspeed_config.dtype()})
- return data.to(**kwargs)
- return data
-
- def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
- """
- Prepare `inputs` before feeding them to the model, converting them to tensors if they are not already and
- handling potential state.
- """
- inputs = self._prepare_input(inputs)
- if len(inputs) == 0:
- raise ValueError(
- "The batch received was empty, your model won't be able to train on it. Double-check that your "
- f"training dataset contains keys expected by the model: {','.join(self._signature_columns)}."
- )
- if self.args.past_index >= 0 and self._past is not None:
- inputs["mems"] = self._past
-
- return inputs
-
- def compute_loss_context_manager(self):
- """
- A helper wrapper to group together context managers.
- """
- return self.autocast_smart_context_manager()
-
- def autocast_smart_context_manager(self, cache_enabled: Optional[bool] = True):
- """
- A helper wrapper that creates an appropriate context manager for `autocast` while feeding it the desired
- arguments, depending on the situation.
- """
- if self.use_cuda_amp or self.use_cpu_amp:
- if is_torch_greater_or_equal_than_1_10:
- ctx_manager = (
- torch.cpu.amp.autocast(cache_enabled=cache_enabled, dtype=self.amp_dtype)
- if self.use_cpu_amp
- else torch.cuda.amp.autocast(cache_enabled=cache_enabled, dtype=self.amp_dtype)
- )
- else:
- ctx_manager = torch.cuda.amp.autocast()
- else:
- ctx_manager = contextlib.nullcontext() if sys.version_info >= (3, 7) else contextlib.suppress()
-
- return ctx_manager
-
- def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
- """
- Perform a training step on a batch of inputs.
-
- Subclass and override to inject custom behavior.
-
- Args:
- model (`nn.Module`):
- The model to train.
- inputs (`Dict[str, Union[torch.Tensor, Any]]`):
- The inputs and targets of the model.
-
- The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
- argument `labels`. Check your model's documentation for all accepted arguments.
-
- Return:
- `torch.Tensor`: The tensor with training loss on this batch.
- """
- model.train()
- inputs = self._prepare_inputs(inputs)
-
- if is_sagemaker_mp_enabled():
- loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
- return loss_mb.reduce_mean().detach().to(self.args.device)
-
- with self.compute_loss_context_manager():
- loss = self.compute_loss(model, inputs)
-
- if self.args.n_gpu > 1:
- loss = loss.mean() # mean() to average on multi-gpu parallel training
-
- if self.args.gradient_accumulation_steps > 1 and not self.deepspeed:
- # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
- loss = loss / self.args.gradient_accumulation_steps
-
- if self.do_grad_scaling:
- self.scaler.scale(loss).backward()
- elif self.use_apex:
- with amp.scale_loss(loss, self.optimizer) as scaled_loss:
- scaled_loss.backward()
- elif self.deepspeed:
- # loss gets scaled under gradient_accumulation_steps in deepspeed
- loss = self.deepspeed.backward(loss)
- else:
- loss.backward()
-
- return loss.detach()
-
- def compute_loss(self, model, inputs, return_outputs=False):
- """
- How the loss is computed by Trainer. By default, all models return the loss in the first element.
-
- Subclass and override for custom behavior.
- """
- if self.label_smoother is not None and "labels" in inputs:
- labels = inputs.pop("labels")
- else:
- labels = None
- outputs = model(**inputs)
- # Save past state if it exists
- # TODO: this needs to be fixed and made cleaner later.
- if self.args.past_index >= 0:
- self._past = outputs[self.args.past_index]
-
- if labels is not None:
- if unwrap_model(model)._get_name() in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
- loss = self.label_smoother(outputs, labels, shift_labels=True)
- else:
- loss = self.label_smoother(outputs, labels)
- else:
- if isinstance(outputs, dict) and "loss" not in outputs:
- raise ValueError(
- "The model did not return a loss from the inputs, only the following keys: "
- f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
- )
- # We don't use .loss here since the model may return tuples instead of ModelOutput.
- loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
-
- return (loss, outputs) if return_outputs else loss
-
- def is_local_process_zero(self) -> bool:
- """
- Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several
- machines) main process.
- """
- return self.args.local_process_index == 0
-
- def is_world_process_zero(self) -> bool:
- """
- Whether or not this process is the global main process (when training in a distributed fashion on several
- machines, this is only going to be `True` for one process).
- """
- # Special case for SageMaker ModelParallel since there process_index is dp_process_index, not the global
- # process index.
- if is_sagemaker_mp_enabled():
- return smp.rank() == 0
- else:
- return self.args.process_index == 0
-
- def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
- """
- Will save the model, so you can reload it using `from_pretrained()`.
-
- Will only save from the main process.
- """
-
- if output_dir is None:
- output_dir = self.args.output_dir
-
- if is_torch_tpu_available():
- self._save_tpu(output_dir)
- elif is_sagemaker_mp_enabled():
- # Calling the state_dict needs to be done on the wrapped model and on all processes.
- os.makedirs(output_dir, exist_ok=True)
- state_dict = self.model_wrapped.state_dict()
- if self.args.should_save:
- self._save(output_dir, state_dict=state_dict)
- if IS_SAGEMAKER_MP_POST_1_10:
- # 'user_content.pt' indicates model state_dict saved with smp >= 1.10
- Path(os.path.join(output_dir, "user_content.pt")).touch()
- elif (
- ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp
- or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
- or self.fsdp is not None
- ):
- state_dict = self.model.state_dict()
-
- if self.args.should_save:
- self._save(output_dir, state_dict=state_dict)
- elif self.deepspeed:
- # this takes care of everything as long as we aren't under zero3
- if self.args.should_save:
- self._save(output_dir)
-
- if is_deepspeed_zero3_enabled():
- # It's too complicated to try to override different places where the weights dump gets
- # saved, so since under zero3 the file is bogus, simply delete it. The user should
- # either user deepspeed checkpoint to resume or to recover full weights use
- # zero_to_fp32.py stored in the checkpoint.
- if self.args.should_save:
- file = os.path.join(output_dir, WEIGHTS_NAME)
- if os.path.isfile(file):
- # logger.info(f"deepspeed zero3: removing {file}, see zero_to_fp32.py to recover weights")
- os.remove(file)
-
- # now save the real model if stage3_gather_16bit_weights_on_model_save=True
- # if false it will not be saved.
- # This must be called on all ranks
- if not self.deepspeed.save_16bit_model(output_dir, WEIGHTS_NAME):
- logger.warning(
- "deepspeed.save_16bit_model didn't save the model, since"
- " stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead, use"
- " zero_to_fp32.py to recover weights"
- )
- self.deepspeed.save_checkpoint(output_dir)
-
- elif self.args.should_save:
- self._save(output_dir)
-
- # Push to the Hub when `save_model` is called by the user.
- if self.args.push_to_hub and not _internal_call:
- self.push_to_hub(commit_message="Model save")
-
- def _save_tpu(self, output_dir: Optional[str] = None):
- output_dir = output_dir if output_dir is not None else self.args.output_dir
- logger.info(f"Saving model checkpoint to {output_dir}")
-
- if xm.is_master_ordinal():
- os.makedirs(output_dir, exist_ok=True)
- torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
-
- # Save a trained model and configuration using `save_pretrained()`.
- # They can then be reloaded using `from_pretrained()`
- xm.rendezvous("saving_checkpoint")
- if not isinstance(self.model, PreTrainedModel):
- if isinstance(unwrap_model(self.model), PreTrainedModel):
- unwrap_model(self.model).save_pretrained(
- output_dir,
- is_main_process=self.args.should_save,
- state_dict=self.model.state_dict(),
- save_function=xm.save,
- )
- else:
- logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
- state_dict = self.model.state_dict()
- xm.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
- else:
- self.model.save_pretrained(output_dir, is_main_process=self.args.should_save, save_function=xm.save)
- if self.tokenizer is not None and self.args.should_save:
- self.tokenizer.save_pretrained(output_dir)
+class PrefixTrainer(Trainer):
+ def __init__(self, *args, save_changed=False, **kwargs):
+ self.save_changed = save_changed
+ super().__init__(*args, **kwargs)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
@@ -2820,14 +45,14 @@ class Trainer:
if isinstance(unwrap_model(self.model), PreTrainedModel):
if state_dict is None:
state_dict = self.model.state_dict()
- unwrap_model(self.model).save_pretrained(output_dir, state_dict=filtered_state_dict)
+ unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
else:
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
if state_dict is None:
state_dict = self.model.state_dict()
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
else:
- if self.save_prefixencoder:
+ if self.save_changed:
print("Saving PrefixEncoder")
state_dict = self.model.state_dict()
filtered_state_dict = {}
@@ -2843,988 +68,3 @@ class Trainer:
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
-
- def store_flos(self):
- # Storing the number of floating-point operations that went into the model
- if self.args.local_rank != -1:
- self.state.total_flos += (
- distributed_broadcast_scalars([self.current_flos], device=self.args.device).sum().item()
- )
- self.current_flos = 0
- else:
- self.state.total_flos += self.current_flos
- self.current_flos = 0
-
- def _sorted_checkpoints(
- self, output_dir=None, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False
- ) -> List[str]:
- ordering_and_checkpoint_path = []
-
- glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
-
- for path in glob_checkpoints:
- if use_mtime:
- ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
- else:
- regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
- if regex_match is not None and regex_match.groups() is not None:
- ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
-
- checkpoints_sorted = sorted(ordering_and_checkpoint_path)
- checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
- # Make sure we don't delete the best model.
- if self.state.best_model_checkpoint is not None:
- best_model_index = checkpoints_sorted.index(str(Path(self.state.best_model_checkpoint)))
- for i in range(best_model_index, len(checkpoints_sorted) - 2):
- checkpoints_sorted[i], checkpoints_sorted[i + 1] = checkpoints_sorted[i + 1], checkpoints_sorted[i]
- return checkpoints_sorted
-
- def _rotate_checkpoints(self, use_mtime=False, output_dir=None) -> None:
- if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
- return
-
- # Check if we should delete older checkpoint(s)
- checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime, output_dir=output_dir)
- if len(checkpoints_sorted) <= self.args.save_total_limit:
- return
-
- # If save_total_limit=1 with load_best_model_at_end=True, we could end up deleting the last checkpoint, which
- # we don't do to allow resuming.
- save_total_limit = self.args.save_total_limit
- if (
- self.state.best_model_checkpoint is not None
- and self.args.save_total_limit == 1
- and checkpoints_sorted[-1] != self.state.best_model_checkpoint
- ):
- save_total_limit = 2
-
- number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
- checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
- for checkpoint in checkpoints_to_be_deleted:
- logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
- shutil.rmtree(checkpoint, ignore_errors=True)
-
- def evaluate(
- self,
- eval_dataset: Optional[Dataset] = None,
- ignore_keys: Optional[List[str]] = None,
- metric_key_prefix: str = "eval",
- ) -> Dict[str, float]:
- """
- Run evaluation and returns metrics.
-
- The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
- (pass it to the init `compute_metrics` argument).
-
- You can also subclass and override this method to inject custom behavior.
-
- Args:
- eval_dataset (`Dataset`, *optional*):
- Pass a dataset if you wish to override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns
- not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
- method.
- ignore_keys (`Lst[str]`, *optional*):
- A list of keys in the output of your model (if it is a dictionary) that should be ignored when
- gathering predictions.
- metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
- An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
- "eval_bleu" if the prefix is "eval" (default)
-
- Returns:
- A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
- dictionary also contains the epoch number which comes from the training state.
- """
- # memory metrics - must set up as early as possible
- self._memory_tracker.start()
-
- eval_dataloader = self.get_eval_dataloader(eval_dataset)
- start_time = time.time()
-
- eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
- output = eval_loop(
- eval_dataloader,
- description="Evaluation",
- # No point gathering the predictions if there are no metrics, otherwise we defer to
- # self.args.prediction_loss_only
- prediction_loss_only=True if self.compute_metrics is None else None,
- ignore_keys=ignore_keys,
- metric_key_prefix=metric_key_prefix,
- )
-
- total_batch_size = self.args.eval_batch_size * self.args.world_size
- if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
- start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
- output.metrics.update(
- speed_metrics(
- metric_key_prefix,
- start_time,
- num_samples=output.num_samples,
- num_steps=math.ceil(output.num_samples / total_batch_size),
- )
- )
-
- self.log(output.metrics)
-
- if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
- # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
- xm.master_print(met.metrics_report())
-
- self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
-
- self._memory_tracker.stop_and_update_metrics(output.metrics)
-
- return output.metrics
-
- def predict(
- self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test"
- ) -> PredictionOutput:
- """
- Run prediction and returns predictions and potential metrics.
-
- Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
- will also return metrics, like in `evaluate()`.
-
- Args:
- test_dataset (`Dataset`):
- Dataset to run the predictions on. If it is an `datasets.Dataset`, columns not accepted by the
- `model.forward()` method are automatically removed. Has to implement the method `__len__`
- ignore_keys (`Lst[str]`, *optional*):
- A list of keys in the output of your model (if it is a dictionary) that should be ignored when
- gathering predictions.
- metric_key_prefix (`str`, *optional*, defaults to `"test"`):
- An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
- "test_bleu" if the prefix is "test" (default)
-
-
-
- If your predictions or labels have different sequence length (for instance because you're doing dynamic padding
- in a token classification task) the predictions will be padded (on the right) to allow for concatenation into
- one array. The padding index is -100.
-
-
-
- Returns: *NamedTuple* A namedtuple with the following keys:
-
- - predictions (`np.ndarray`): The predictions on `test_dataset`.
- - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
- - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
- labels).
- """
- # memory metrics - must set up as early as possible
- self._memory_tracker.start()
-
- test_dataloader = self.get_test_dataloader(test_dataset)
- start_time = time.time()
-
- eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
- output = eval_loop(
- test_dataloader, description="Prediction", ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix
- )
- total_batch_size = self.args.eval_batch_size * self.args.world_size
- if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
- start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
- output.metrics.update(
- speed_metrics(
- metric_key_prefix,
- start_time,
- num_samples=output.num_samples,
- num_steps=math.ceil(output.num_samples / total_batch_size),
- )
- )
-
- self.control = self.callback_handler.on_predict(self.args, self.state, self.control, output.metrics)
- self._memory_tracker.stop_and_update_metrics(output.metrics)
-
- return PredictionOutput(predictions=output.predictions, label_ids=output.label_ids, metrics=output.metrics)
-
- def evaluation_loop(
- self,
- dataloader: DataLoader,
- description: str,
- prediction_loss_only: Optional[bool] = None,
- ignore_keys: Optional[List[str]] = None,
- metric_key_prefix: str = "eval",
- ) -> EvalLoopOutput:
- """
- Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
-
- Works both with or without labels.
- """
- args = self.args
-
- prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else args.prediction_loss_only
-
- # if eval is called w/o train init deepspeed here
- if args.deepspeed and not self.deepspeed:
- # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
- # from the checkpoint eventually
- deepspeed_engine, _, _ = deepspeed_init(
- self, num_training_steps=0, resume_from_checkpoint=None, inference=True
- )
- self.model = deepspeed_engine.module
- self.model_wrapped = deepspeed_engine
- self.deepspeed = deepspeed_engine
-
- model = self._wrap_model(self.model, training=False, dataloader=dataloader)
-
- # if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
- # while ``train`` is running, cast it to the right dtype first and then put on device
- if not self.is_in_train:
- if args.fp16_full_eval:
- model = model.to(dtype=torch.float16, device=args.device)
- elif args.bf16_full_eval:
- model = model.to(dtype=torch.bfloat16, device=args.device)
-
- batch_size = self.args.eval_batch_size
-
- logger.info(f"***** Running {description} *****")
- if has_length(dataloader):
- logger.info(f" Num examples = {self.num_examples(dataloader)}")
- else:
- logger.info(" Num examples: Unknown")
- logger.info(f" Batch size = {batch_size}")
-
- model.eval()
-
- self.callback_handler.eval_dataloader = dataloader
- # Do this before wrapping.
- eval_dataset = getattr(dataloader, "dataset", None)
-
- if is_torch_tpu_available():
- dataloader = pl.ParallelLoader(dataloader, [args.device]).per_device_loader(args.device)
-
- if args.past_index >= 0:
- self._past = None
-
- # Initialize containers
- # losses/preds/labels on GPU/TPU (accumulated for eval_accumulation_steps)
- losses_host = None
- preds_host = None
- labels_host = None
- inputs_host = None
-
- # losses/preds/labels on CPU (final containers)
- all_losses = None
- all_preds = None
- all_labels = None
- all_inputs = None
- # Will be useful when we have an iterable dataset so don't know its length.
-
- observed_num_examples = 0
- # Main evaluation loop
- for step, inputs in enumerate(dataloader):
- # Update the observed num examples
- observed_batch_size = find_batch_size(inputs)
- if observed_batch_size is not None:
- observed_num_examples += observed_batch_size
- # For batch samplers, batch_size is not known by the dataloader in advance.
- if batch_size is None:
- batch_size = observed_batch_size
-
- # Prediction step
- loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
- inputs_decode = self._prepare_input(inputs["input_ids"]) if args.include_inputs_for_metrics else None
-
- if is_torch_tpu_available():
- xm.mark_step()
-
- # Update containers on host
- if loss is not None:
- losses = self._nested_gather(loss.repeat(batch_size))
- losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
- if labels is not None:
- labels = self._pad_across_processes(labels)
- labels = self._nested_gather(labels)
- labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
- if inputs_decode is not None:
- inputs_decode = self._pad_across_processes(inputs_decode)
- inputs_decode = self._nested_gather(inputs_decode)
- inputs_host = (
- inputs_decode
- if inputs_host is None
- else nested_concat(inputs_host, inputs_decode, padding_index=-100)
- )
- if logits is not None:
- logits = self._pad_across_processes(logits)
- logits = self._nested_gather(logits)
- if self.preprocess_logits_for_metrics is not None:
- logits = self.preprocess_logits_for_metrics(logits, labels)
- preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
- self.control = self.callback_handler.on_prediction_step(args, self.state, self.control)
-
- # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
- if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:
- if losses_host is not None:
- losses = nested_numpify(losses_host)
- all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
- if preds_host is not None:
- logits = nested_numpify(preds_host)
- all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
- if inputs_host is not None:
- inputs_decode = nested_numpify(inputs_host)
- all_inputs = (
- inputs_decode
- if all_inputs is None
- else nested_concat(all_inputs, inputs_decode, padding_index=-100)
- )
- if labels_host is not None:
- labels = nested_numpify(labels_host)
- all_labels = (
- labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
- )
-
- # Set back to None to begin a new accumulation
- losses_host, preds_host, inputs_host, labels_host = None, None, None, None
-
- if args.past_index and hasattr(self, "_past"):
- # Clean the state at the end of the evaluation loop
- delattr(self, "_past")
-
- # Gather all remaining tensors and put them back on the CPU
- if losses_host is not None:
- losses = nested_numpify(losses_host)
- all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
- if preds_host is not None:
- logits = nested_numpify(preds_host)
- all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
- if inputs_host is not None:
- inputs_decode = nested_numpify(inputs_host)
- all_inputs = (
- inputs_decode if all_inputs is None else nested_concat(all_inputs, inputs_decode, padding_index=-100)
- )
- if labels_host is not None:
- labels = nested_numpify(labels_host)
- all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
-
- # Number of samples
- if has_length(eval_dataset):
- num_samples = len(eval_dataset)
- # The instance check is weird and does not actually check for the type, but whether the dataset has the right
- # methods. Therefore we need to make sure it also has the attribute.
- elif isinstance(eval_dataset, IterableDatasetShard) and getattr(eval_dataset, "num_examples", 0) > 0:
- num_samples = eval_dataset.num_examples
- else:
- if has_length(dataloader):
- num_samples = self.num_examples(dataloader)
- else: # both len(dataloader.dataset) and len(dataloader) fail
- num_samples = observed_num_examples
- if num_samples == 0 and observed_num_examples > 0:
- num_samples = observed_num_examples
-
- # Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
- # samplers has been rounded to a multiple of batch_size, so we truncate.
- if all_losses is not None:
- all_losses = all_losses[:num_samples]
- if all_preds is not None:
- all_preds = nested_truncate(all_preds, num_samples)
- if all_labels is not None:
- all_labels = nested_truncate(all_labels, num_samples)
- if all_inputs is not None:
- all_inputs = nested_truncate(all_inputs, num_samples)
-
- # Metrics!
- if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
- if args.include_inputs_for_metrics:
- metrics = self.compute_metrics(
- EvalPrediction(predictions=all_preds, label_ids=all_labels, inputs=all_inputs)
- )
- else:
- metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
- else:
- metrics = {}
-
- # To be JSON-serializable, we need to remove numpy types or zero-d tensors
- metrics = denumpify_detensorize(metrics)
-
- if all_losses is not None:
- metrics[f"{metric_key_prefix}_loss"] = all_losses.mean().item()
- if hasattr(self, "jit_compilation_time"):
- metrics[f"{metric_key_prefix}_jit_compilation_time"] = self.jit_compilation_time
-
- # Prefix all keys with metric_key_prefix + '_'
- for key in list(metrics.keys()):
- if not key.startswith(f"{metric_key_prefix}_"):
- metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
-
- return EvalLoopOutput(predictions=all_preds, label_ids=all_labels, metrics=metrics, num_samples=num_samples)
-
- def _nested_gather(self, tensors, name=None):
- """
- Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
- concatenating them to `gathered`
- """
- if tensors is None:
- return
- if is_torch_tpu_available():
- if name is None:
- name = "nested_gather"
- tensors = nested_xla_mesh_reduce(tensors, name)
- elif is_sagemaker_mp_enabled():
- tensors = smp_gather(tensors)
- elif self.args.local_rank != -1:
- tensors = distributed_concat(tensors)
- return tensors
-
- # Copied from Accelerate.
- def _pad_across_processes(self, tensor, pad_index=-100):
- """
- Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so
- they can safely be gathered.
- """
- if isinstance(tensor, (list, tuple)):
- return type(tensor)(self._pad_across_processes(t, pad_index=pad_index) for t in tensor)
- elif isinstance(tensor, dict):
- return type(tensor)({k: self._pad_across_processes(v, pad_index=pad_index) for k, v in tensor.items()})
- elif not isinstance(tensor, torch.Tensor):
- raise TypeError(
- f"Can't pad the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
- )
-
- if len(tensor.shape) < 2:
- return tensor
- # Gather all sizes
- size = torch.tensor(tensor.shape, device=tensor.device)[None]
- sizes = self._nested_gather(size).cpu()
-
- max_size = max(s[1] for s in sizes)
- # When extracting XLA graphs for compilation, max_size is 0,
- # so use inequality to avoid errors.
- if tensor.shape[1] >= max_size:
- return tensor
-
- # Then pad to the maximum size
- old_size = tensor.shape
- new_size = list(old_size)
- new_size[1] = max_size
- new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
- new_tensor[:, : old_size[1]] = tensor
- return new_tensor
-
- def prediction_step(
- self,
- model: nn.Module,
- inputs: Dict[str, Union[torch.Tensor, Any]],
- prediction_loss_only: bool,
- ignore_keys: Optional[List[str]] = None,
- ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
- """
- Perform an evaluation step on `model` using `inputs`.
-
- Subclass and override to inject custom behavior.
-
- Args:
- model (`nn.Module`):
- The model to evaluate.
- inputs (`Dict[str, Union[torch.Tensor, Any]]`):
- The inputs and targets of the model.
-
- The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
- argument `labels`. Check your model's documentation for all accepted arguments.
- prediction_loss_only (`bool`):
- Whether or not to return the loss only.
- ignore_keys (`Lst[str]`, *optional*):
- A list of keys in the output of your model (if it is a dictionary) that should be ignored when
- gathering predictions.
-
- Return:
- Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss,
- logits and labels (each being optional).
- """
- has_labels = False if len(self.label_names) == 0 else all(inputs.get(k) is not None for k in self.label_names)
- # For CLIP-like models capable of returning loss values.
- # If `return_loss` is not specified or being `None` in `inputs`, we check if the default value of `return_loss`
- # is `True` in `model.forward`.
- return_loss = inputs.get("return_loss", None)
- if return_loss is None:
- return_loss = self.can_return_loss
- loss_without_labels = True if len(self.label_names) == 0 and return_loss else False
-
- inputs = self._prepare_inputs(inputs)
- if ignore_keys is None:
- if hasattr(self.model, "config"):
- ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
- else:
- ignore_keys = []
-
- # labels may be popped when computing the loss (label smoothing for instance) so we grab them first.
- if has_labels or loss_without_labels:
- labels = nested_detach(tuple(inputs.get(name) for name in self.label_names))
- if len(labels) == 1:
- labels = labels[0]
- else:
- labels = None
-
- with torch.no_grad():
- if is_sagemaker_mp_enabled():
- raw_outputs = smp_forward_only(model, inputs)
- if has_labels or loss_without_labels:
- if isinstance(raw_outputs, dict):
- loss_mb = raw_outputs["loss"]
- logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys + ["loss"])
- else:
- loss_mb = raw_outputs[0]
- logits_mb = raw_outputs[1:]
-
- loss = loss_mb.reduce_mean().detach().cpu()
- logits = smp_nested_concat(logits_mb)
- else:
- loss = None
- if isinstance(raw_outputs, dict):
- logits_mb = tuple(v for k, v in raw_outputs.items() if k not in ignore_keys)
- else:
- logits_mb = raw_outputs
- logits = smp_nested_concat(logits_mb)
- else:
- if has_labels or loss_without_labels:
- with self.compute_loss_context_manager():
- loss, outputs = self.compute_loss(model, inputs, return_outputs=True)
- loss = loss.mean().detach()
-
- if isinstance(outputs, dict):
- logits = tuple(v for k, v in outputs.items() if k not in ignore_keys + ["loss"])
- else:
- logits = outputs[1:]
- else:
- loss = None
- with self.compute_loss_context_manager():
- outputs = model(**inputs)
- if isinstance(outputs, dict):
- logits = tuple(v for k, v in outputs.items() if k not in ignore_keys)
- else:
- logits = outputs
- # TODO: this needs to be fixed and made cleaner later.
- if self.args.past_index >= 0:
- self._past = outputs[self.args.past_index - 1]
-
- if prediction_loss_only:
- return (loss, None, None)
-
- logits = nested_detach(logits)
- if len(logits) == 1:
- logits = logits[0]
-
- return (loss, logits, labels)
-
- def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
- """
- For models that inherit from [`PreTrainedModel`], uses that method to compute the number of floating point
- operations for every backward + forward pass. If using another model, either implement such a method in the
- model or subclass and override this method.
-
- Args:
- inputs (`Dict[str, Union[torch.Tensor, Any]]`):
- The inputs and targets of the model.
-
- Returns:
- `int`: The number of floating-point operations.
- """
- if hasattr(self.model, "floating_point_ops"):
- return self.model.floating_point_ops(inputs)
- else:
- return 0
-
- def init_git_repo(self, at_init: bool = False):
- """
- Initializes a git repo in `self.args.hub_model_id`.
-
- Args:
- at_init (`bool`, *optional*, defaults to `False`):
- Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is
- `True` and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped
- out.
- """
- if not self.is_world_process_zero():
- return
- if self.args.hub_model_id is None:
- repo_name = Path(self.args.output_dir).absolute().name
- else:
- repo_name = self.args.hub_model_id
- if "/" not in repo_name:
- repo_name = get_full_repo_name(repo_name, token=self.args.hub_token)
-
- # Make sure the repo exists.
- create_repo(repo_name, token=self.args.hub_token, private=self.args.hub_private_repo, exist_ok=True)
- try:
- self.repo = Repository(self.args.output_dir, clone_from=repo_name, token=self.args.hub_token)
- except EnvironmentError:
- if self.args.overwrite_output_dir and at_init:
- # Try again after wiping output_dir
- shutil.rmtree(self.args.output_dir)
- self.repo = Repository(self.args.output_dir, clone_from=repo_name, token=self.args.hub_token)
- else:
- raise
-
- self.repo.git_pull()
-
- # By default, ignore the checkpoint folders
- if (
- not os.path.exists(os.path.join(self.args.output_dir, ".gitignore"))
- and self.args.hub_strategy != HubStrategy.ALL_CHECKPOINTS
- ):
- with open(os.path.join(self.args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
- writer.writelines(["checkpoint-*/"])
-
- # Add "*.sagemaker" to .gitignore if using SageMaker
- if os.environ.get("SM_TRAINING_ENV"):
- self._add_sm_patterns_to_gitignore()
-
- self.push_in_progress = None
-
- def create_model_card(
- self,
- language: Optional[str] = None,
- license: Optional[str] = None,
- tags: Union[str, List[str], None] = None,
- model_name: Optional[str] = None,
- finetuned_from: Optional[str] = None,
- tasks: Union[str, List[str], None] = None,
- dataset_tags: Union[str, List[str], None] = None,
- dataset: Union[str, List[str], None] = None,
- dataset_args: Union[str, List[str], None] = None,
- ):
- """
- Creates a draft of a model card using the information available to the `Trainer`.
-
- Args:
- language (`str`, *optional*):
- The language of the model (if applicable)
- license (`str`, *optional*):
- The license of the model. Will default to the license of the pretrained model used, if the original
- model given to the `Trainer` comes from a repo on the Hub.
- tags (`str` or `List[str]`, *optional*):
- Some tags to be included in the metadata of the model card.
- model_name (`str`, *optional*):
- The name of the model.
- finetuned_from (`str`, *optional*):
- The name of the model used to fine-tune this one (if applicable). Will default to the name of the repo
- of the original model given to the `Trainer` (if it comes from the Hub).
- tasks (`str` or `List[str]`, *optional*):
- One or several task identifiers, to be included in the metadata of the model card.
- dataset_tags (`str` or `List[str]`, *optional*):
- One or several dataset tags, to be included in the metadata of the model card.
- dataset (`str` or `List[str]`, *optional*):
- One or several dataset identifiers, to be included in the metadata of the model card.
- dataset_args (`str` or `List[str]`, *optional*):
- One or several dataset arguments, to be included in the metadata of the model card.
- """
- if not self.is_world_process_zero():
- return
-
- training_summary = TrainingSummary.from_trainer(
- self,
- language=language,
- license=license,
- tags=tags,
- model_name=model_name,
- finetuned_from=finetuned_from,
- tasks=tasks,
- dataset_tags=dataset_tags,
- dataset=dataset,
- dataset_args=dataset_args,
- )
- model_card = training_summary.to_model_card()
- with open(os.path.join(self.args.output_dir, "README.md"), "w") as f:
- f.write(model_card)
-
- def _push_from_checkpoint(self, checkpoint_folder):
- # Only push from one node.
- if not self.is_world_process_zero() or self.args.hub_strategy == HubStrategy.END:
- return
- # If we haven't finished the last push, we don't do this one.
- if self.push_in_progress is not None and not self.push_in_progress.is_done:
- return
-
- output_dir = self.args.output_dir
- # To avoid a new synchronization of all model weights, we just copy the file from the checkpoint folder
- modeling_files = [CONFIG_NAME, WEIGHTS_NAME]
- for modeling_file in modeling_files:
- if os.path.isfile(os.path.join(checkpoint_folder, modeling_file)):
- shutil.copy(os.path.join(checkpoint_folder, modeling_file), os.path.join(output_dir, modeling_file))
- # Saving the tokenizer is fast and we don't know how many files it may have spawned, so we resave it to be sure.
- if self.tokenizer is not None:
- self.tokenizer.save_pretrained(output_dir)
- # Same for the training arguments
- torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
-
- try:
- if self.args.hub_strategy == HubStrategy.CHECKPOINT:
- # Temporarily move the checkpoint just saved for the push
- tmp_checkpoint = os.path.join(output_dir, "last-checkpoint")
- # We have to remove the "last-checkpoint" dir if it exists, otherwise the checkpoint is moved as a
- # subfolder.
- if os.path.isdir(tmp_checkpoint):
- shutil.rmtree(tmp_checkpoint)
- shutil.move(checkpoint_folder, tmp_checkpoint)
-
- if self.args.save_strategy == IntervalStrategy.STEPS:
- commit_message = f"Training in progress, step {self.state.global_step}"
- else:
- commit_message = f"Training in progress, epoch {int(self.state.epoch)}"
- _, self.push_in_progress = self.repo.push_to_hub(
- commit_message=commit_message, blocking=False, auto_lfs_prune=True
- )
- finally:
- if self.args.hub_strategy == HubStrategy.CHECKPOINT:
- # Move back the checkpoint to its place
- shutil.move(tmp_checkpoint, checkpoint_folder)
-
- def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str:
- """
- Upload *self.model* and *self.tokenizer* to the 🤗 model hub on the repo *self.args.hub_model_id*.
-
- Parameters:
- commit_message (`str`, *optional*, defaults to `"End of training"`):
- Message to commit while pushing.
- blocking (`bool`, *optional*, defaults to `True`):
- Whether the function should return only when the `git push` has finished.
- kwargs:
- Additional keyword arguments passed along to [`~Trainer.create_model_card`].
-
- Returns:
- The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of
- the commit and an object to track the progress of the commit if `blocking=True`
- """
- # If a user calls manually `push_to_hub` with `self.args.push_to_hub = False`, we try to create the repo but
- # it might fail.
- if not hasattr(self, "repo"):
- self.init_git_repo()
-
- model_name = kwargs.pop("model_name", None)
- if model_name is None and self.args.should_save:
- if self.args.hub_model_id is None:
- model_name = Path(self.args.output_dir).name
- else:
- model_name = self.args.hub_model_id.split("/")[-1]
-
- # Needs to be executed on all processes for TPU training, but will only save on the processed determined by
- # self.args.should_save.
- self.save_model(_internal_call=True)
-
- # Only push from one node.
- if not self.is_world_process_zero():
- return
-
- # Cancel any async push in progress if blocking=True. The commits will all be pushed together.
- if blocking and self.push_in_progress is not None and not self.push_in_progress.is_done:
- self.push_in_progress._process.kill()
- self.push_in_progress = None
-
- git_head_commit_url = self.repo.push_to_hub(
- commit_message=commit_message, blocking=blocking, auto_lfs_prune=True
- )
- # push separately the model card to be independant from the rest of the model
- if self.args.should_save:
- self.create_model_card(model_name=model_name, **kwargs)
- try:
- self.repo.push_to_hub(
- commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True
- )
- except EnvironmentError as exc:
- logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")
-
- return git_head_commit_url
-
- #
- # Deprecated code
- #
-
- def prediction_loop(
- self,
- dataloader: DataLoader,
- description: str,
- prediction_loss_only: Optional[bool] = None,
- ignore_keys: Optional[List[str]] = None,
- metric_key_prefix: str = "eval",
- ) -> EvalLoopOutput:
- """
- Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.
-
- Works both with or without labels.
- """
- args = self.args
-
- if not has_length(dataloader):
- raise ValueError("dataloader must implement a working __len__")
-
- prediction_loss_only = prediction_loss_only if prediction_loss_only is not None else args.prediction_loss_only
-
- # if eval is called w/o train init deepspeed here
- if args.deepspeed and not self.deepspeed:
- # XXX: eval doesn't have `resume_from_checkpoint` arg but we should be able to do eval
- # from the checkpoint eventually
- deepspeed_engine, _, _ = deepspeed_init(self, num_training_steps=0, resume_from_checkpoint=None)
- self.model = deepspeed_engine.module
- self.model_wrapped = deepspeed_engine
- self.deepspeed = deepspeed_engine
- # XXX: we don't need optim/sched for inference, but this needs to be sorted out, since
- # for example the Z3-optimizer is a must for zero3 to work even for inference - what we
- # don't need is the deepspeed basic optimizer which is self.optimizer.optimizer
- deepspeed_engine.optimizer.optimizer = None
- deepspeed_engine.lr_scheduler = None
-
- model = self._wrap_model(self.model, training=False, dataloader=dataloader)
-
- # if full fp16 or bf16 eval is wanted and this ``evaluation`` or ``predict`` isn't called
- # while ``train`` is running, cast it to the right dtype first and then put on device
- if not self.is_in_train:
- if args.fp16_full_eval:
- model = model.to(dtype=torch.float16, device=args.device)
- elif args.bf16_full_eval:
- model = model.to(dtype=torch.bfloat16, device=args.device)
-
- batch_size = dataloader.batch_size
- num_examples = self.num_examples(dataloader)
- logger.info(f"***** Running {description} *****")
- logger.info(f" Num examples = {num_examples}")
- logger.info(f" Batch size = {batch_size}")
- losses_host: torch.Tensor = None
- preds_host: Union[torch.Tensor, List[torch.Tensor]] = None
- labels_host: Union[torch.Tensor, List[torch.Tensor]] = None
- inputs_host: Union[torch.Tensor, List[torch.Tensor]] = None
-
- world_size = max(1, args.world_size)
-
- eval_losses_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=batch_size)
- if not prediction_loss_only:
- # The actual number of eval_sample can be greater than num_examples in distributed settings (when we pass
- # a batch size to the sampler)
- make_multiple_of = None
- if hasattr(dataloader, "sampler") and isinstance(dataloader.sampler, SequentialDistributedSampler):
- make_multiple_of = dataloader.sampler.batch_size
- preds_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
- labels_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
- inputs_gatherer = DistributedTensorGatherer(world_size, num_examples, make_multiple_of=make_multiple_of)
-
- model.eval()
-
- if is_torch_tpu_available():
- dataloader = pl.ParallelLoader(dataloader, [args.device]).per_device_loader(args.device)
-
- if args.past_index >= 0:
- self._past = None
-
- self.callback_handler.eval_dataloader = dataloader
-
- for step, inputs in enumerate(dataloader):
- loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys)
- inputs_decode = self._prepare_input(inputs["input_ids"]) if args.include_inputs_for_metrics else None
-
- if loss is not None:
- losses = loss.repeat(batch_size)
- losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
- if logits is not None:
- preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
- if labels is not None:
- labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
- if inputs_decode is not None:
- inputs_host = (
- inputs_decode
- if inputs_host is None
- else nested_concat(inputs_host, inputs_decode, padding_index=-100)
- )
- self.control = self.callback_handler.on_prediction_step(args, self.state, self.control)
-
- # Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
- if args.eval_accumulation_steps is not None and (step + 1) % args.eval_accumulation_steps == 0:
- eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
- if not prediction_loss_only:
- preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
- labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))
- inputs_gatherer.add_arrays(self._gather_and_numpify(inputs_host, "eval_inputs_ids"))
-
- # Set back to None to begin a new accumulation
- losses_host, preds_host, labels_host, inputs_host = None, None, None, None
-
- if args.past_index and hasattr(self, "_past"):
- # Clean the state at the end of the evaluation loop
- delattr(self, "_past")
-
- # Gather all remaining tensors and put them back on the CPU
- eval_losses_gatherer.add_arrays(self._gather_and_numpify(losses_host, "eval_losses"))
- if not prediction_loss_only:
- preds_gatherer.add_arrays(self._gather_and_numpify(preds_host, "eval_preds"))
- labels_gatherer.add_arrays(self._gather_and_numpify(labels_host, "eval_label_ids"))
- inputs_gatherer.add_arrays(self._gather_and_numpify(inputs_host, "eval_inputs_ids"))
-
- eval_loss = eval_losses_gatherer.finalize()
- preds = preds_gatherer.finalize() if not prediction_loss_only else None
- label_ids = labels_gatherer.finalize() if not prediction_loss_only else None
- inputs_ids = inputs_gatherer.finalize() if not prediction_loss_only else None
-
- if self.compute_metrics is not None and preds is not None and label_ids is not None:
- if args.include_inputs_for_metrics:
- metrics = self.compute_metrics(
- EvalPrediction(predictions=preds, label_ids=label_ids, inputs=inputs_ids)
- )
- else:
- metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
- else:
- metrics = {}
-
- # To be JSON-serializable, we need to remove numpy types or zero-d tensors
- metrics = denumpify_detensorize(metrics)
-
- if eval_loss is not None:
- metrics[f"{metric_key_prefix}_loss"] = eval_loss.mean().item()
-
- # Prefix all keys with metric_key_prefix + '_'
- for key in list(metrics.keys()):
- if not key.startswith(f"{metric_key_prefix}_"):
- metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
-
- return EvalLoopOutput(predictions=preds, label_ids=label_ids, metrics=metrics, num_samples=num_examples)
-
- def _gather_and_numpify(self, tensors, name):
- """
- Gather value of `tensors` (tensor or list/tuple of nested tensors) and convert them to numpy before
- concatenating them to `gathered`
- """
- if tensors is None:
- return
- if is_torch_tpu_available():
- tensors = nested_xla_mesh_reduce(tensors, name)
- elif is_sagemaker_mp_enabled():
- tensors = smp_gather(tensors)
- elif self.args.local_rank != -1:
- tensors = distributed_concat(tensors)
-
- return nested_numpify(tensors)
-
- def _add_sm_patterns_to_gitignore(self) -> None:
- """Add SageMaker Checkpointing patterns to .gitignore file."""
- # Make sure we only do this on the main process
- if not self.is_world_process_zero():
- return
-
- patterns = ["*.sagemaker-uploading", "*.sagemaker-uploaded"]
-
- # Get current .gitignore content
- if os.path.exists(os.path.join(self.repo.local_dir, ".gitignore")):
- with open(os.path.join(self.repo.local_dir, ".gitignore"), "r") as f:
- current_content = f.read()
- else:
- current_content = ""
-
- # Add the patterns to .gitignore
- content = current_content
- for pattern in patterns:
- if pattern not in content:
- if content.endswith("\n"):
- content += pattern
- else:
- content += f"\n{pattern}"
-
- # Write the .gitignore file if it has changed
- if content != current_content:
- with open(os.path.join(self.repo.local_dir, ".gitignore"), "w") as f:
- logger.debug(f"Writing .gitignore file. Content: {content}")
- f.write(content)
-
- self.repo.git_add(".gitignore")
-
- # avoid race condition with git status
- time.sleep(0.5)
-
- if not self.repo.is_repo_clean():
- self.repo.git_commit("Add *.sagemaker patterns to .gitignore.")
- self.repo.git_push()
diff --git a/ptuning/trainer_seq2seq.py b/ptuning/trainer_seq2seq.py
index 19d5cf1..aedeb23 100644
--- a/ptuning/trainer_seq2seq.py
+++ b/ptuning/trainer_seq2seq.py
@@ -19,7 +19,7 @@ from torch import nn
from torch.utils.data import Dataset
from transformers.deepspeed import is_deepspeed_zero3_enabled
-from trainer import Trainer
+from trainer import PrefixTrainer
from transformers.trainer_utils import PredictionOutput
from transformers.utils import logging
@@ -27,7 +27,7 @@ from transformers.utils import logging
logger = logging.get_logger(__name__)
-class Seq2SeqTrainer(Trainer):
+class Seq2SeqTrainer(PrefixTrainer):
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,