a33cb4f8b9
Use transformers trainer
71 lines
3.1 KiB
Python
71 lines
3.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2020-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
|
|
"""
|
|
import os
|
|
from typing import Optional
|
|
from transformers import Trainer
|
|
|
|
import torch
|
|
from transformers.modeling_utils import PreTrainedModel, unwrap_model
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
WEIGHTS_NAME = "pytorch_model.bin"
|
|
TRAINING_ARGS_NAME = "training_args.bin"
|
|
|
|
|
|
class PrefixTrainer(Trainer):
|
|
def __init__(self, *args, save_changed=False, **kwargs):
|
|
self.save_changed = save_changed
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
|
# If we are executing this function, we are the process zero, so we don't check for that.
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
logger.info(f"Saving model checkpoint to {output_dir}")
|
|
# Save a trained model and configuration using `save_pretrained()`.
|
|
# They can then be reloaded using `from_pretrained()`
|
|
if not isinstance(self.model, PreTrainedModel):
|
|
if isinstance(unwrap_model(self.model), PreTrainedModel):
|
|
if state_dict is None:
|
|
state_dict = self.model.state_dict()
|
|
unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict)
|
|
else:
|
|
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
|
|
if state_dict is None:
|
|
state_dict = self.model.state_dict()
|
|
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
|
|
else:
|
|
if self.save_changed:
|
|
print("Saving PrefixEncoder")
|
|
state_dict = self.model.state_dict()
|
|
filtered_state_dict = {}
|
|
for k, v in self.model.named_parameters():
|
|
if v.requires_grad:
|
|
filtered_state_dict[k] = state_dict[k]
|
|
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict)
|
|
else:
|
|
print("Saving the whole model")
|
|
self.model.save_pretrained(output_dir, state_dict=state_dict)
|
|
if self.tokenizer is not None:
|
|
self.tokenizer.save_pretrained(output_dir)
|
|
|
|
# Good practice: save your training arguments together with the trained model
|
|
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
|