1
0
mirror of https://github.com/SpaceVim/SpaceVim.git synced 2025-01-23 20:00:05 +08:00
SpaceVim/bundle/hop.nvim/lua/hop/jump_target.lua

438 lines
13 KiB
Lua
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Jump targets.
--
-- Jump targets are locations in buffers where users might jump to. They are wrapped in a table and provide the
-- required information so that Hop can associate label and display the hints.
--
-- {
-- jump_targets = {},
-- indirect_jump_targets = {},
-- }
--
-- The `jump_targets` field is a list-table of jump targets. A single jump target is simply a location in a given
-- buffer. So you can picture a jump target as a triple (line, column, window).
--
-- {
-- line = 0,
-- column = 0,
-- window = 0,
-- }
--
-- Indirect jump targets are encoded as a flat list-table of pairs (index, score). This table allows to quickly score
-- and sort jump targets. The `index` field gives the index in the `jump_targets` list. The `score` is any number. The
-- rule is that the lower the score is, the less prioritized the jump target will be.
--
-- {
-- index = 0,
-- score = 0,
-- }
--
-- So for instance, for two jump targets, a jump target generator must return such a table:
--
-- {
-- jump_targets = {
-- { line = 1, column = 14, buffer = 0, window = 0 },
-- { line = 2, column = 1, buffer = 0, window = 0 },
-- },
--
-- indirect_jump_targets = {
-- { index = 0, score = 14 },
-- { index = 1, score = 7 },
-- },
-- }
--
-- This is everything you need to know to extend Hop with your own jump targets.
local hint = require'hop.hint'
local window = require'hop.window'
local M = {}
-- Manhattan distance with column and row, weighted on x so that results are more packed on y.
function M.manh_dist(a, b, x_bias)
local bias = x_bias or 10
return bias * math.abs(b[1] - a[1]) + math.abs(b[2] - a[2])
end
-- Mark the current line with jump targets.
--
-- Returns the jump targets as described above.
local function mark_jump_targets_line(buf_handle, win_handle, regex, line_context, col_offset, win_width, direction_mode, hint_position)
local jump_targets = {}
local end_index = nil
if win_width ~= nil then
end_index = col_offset + win_width
else
end_index = vim.fn.strdisplaywidth(line_context.line)
end
local shifted_line = line_context.line:sub(1 + col_offset, vim.fn.byteidx(line_context.line, end_index))
-- modify the shifted line to take the direction mode into account, if any
-- FIXME: we also need to do that for the cursor
local col_bias = 0
if direction_mode ~= nil then
local col = vim.fn.byteidx(line_context.line, direction_mode.cursor_col + 1)
if direction_mode.direction == hint.HintDirection.AFTER_CURSOR then
-- we want to change the start offset so that we ignore everything before the cursor
shifted_line = shifted_line:sub(col - col_offset)
col_bias = col - 1
elseif direction_mode.direction == hint.HintDirection.BEFORE_CURSOR then
-- we want to change the end
shifted_line = shifted_line:sub(1, col - col_offset)
end
end
local col = 1
while true do
local s = shifted_line:sub(col)
local b, e = regex.match(s)
if b == nil or (b == 0 and e == 0) then
break
end
-- Preview need a length to highlight the matched string. Zero means nothing to highlight.
local matched_length = e - b
-- As the make for jump target must be placed at a cell (but some pattern like '^' is
-- placed between cells), we should make sure e > b
if b == e then
e = e + 1
end
local colp = col + b
if hint_position == hint.HintPosition.MIDDLE then
colp = col + math.floor((b + e) / 2)
elseif hint_position == hint.HintPosition.END then
colp = col + e - 1
end
jump_targets[#jump_targets + 1] = {
line = line_context.line_nr,
column = math.max(1, colp + col_offset + col_bias),
length = math.max(0, matched_length),
buffer = buf_handle,
window = win_handle,
}
if regex.oneshot then
break
else
col = col + e
end
end
return jump_targets
end
-- Create jump targets for a given indexed line.
--
-- This function creates the jump targets for the current (indexed) line and appends them to the input list of jump
-- targets `jump_targets`.
--
-- Indirect jump targets are used later to sort jump targets by score and create hints.
local function create_jump_targets_for_line(
buf_handle,
win_handle,
jump_targets,
indirect_jump_targets,
regex,
col_offset,
win_width,
cursor_pos,
direction_mode,
hint_position,
line_context
)
-- first, create the jump targets for the ith line
local line_jump_targets = mark_jump_targets_line(
buf_handle,
win_handle,
regex,
line_context,
col_offset,
win_width,
direction_mode,
hint_position
)
-- then, append those to the input jump target list and create the indexed jump targets
local win_bias = math.abs(vim.api.nvim_get_current_win() - win_handle) * 1000
for _, jump_target in pairs(line_jump_targets) do
jump_targets[#jump_targets + 1] = jump_target
indirect_jump_targets[#indirect_jump_targets + 1] = {
index = #jump_targets,
score = M.manh_dist(cursor_pos, { jump_target.line, jump_target.column }) + win_bias
}
end
end
-- Create jump targets by scanning lines in the currently visible buffer.
--
-- This function takes a regex argument, which is an object containing a match function that must return the span
-- (inclusive beginning, exclusive end) of the match item, or nil when no more match is possible. This object also
-- contains the `oneshot` field, a boolean stating whether only the first match of a line should be taken into account.
--
-- This function returns the lined jump targets (an array of N lines, where N is the number of currently visible lines).
-- Lines without jump targets are assigned an empty table ({}). For lines with jump targets, a list-table contains the
-- jump targets as pair of { line, col }.
--
-- In addition the jump targets, this function returns the total number of jump targets (i.e. this is the same thing as
-- traversing the lined jump targets and summing the number of jump targets for all lines) as a courtesy, plus «
-- indirect jump targets. » Indirect jump targets are encoded as a flat list-table containing three values: i, for the
-- ith line, j, for the rank of the jump target, and dist, the score distance of the associated jump target. This list
-- is sorted according to that last dist parameter in order to know how to distribute the jump targets over the buffer.
function M.jump_targets_by_scanning_lines(regex)
return function(opts)
-- get the window context; this is used to know which part of the visible buffer is to hint
local all_ctxs = window.get_window_context(opts.multi_windows)
local jump_targets = {}
local indirect_jump_targets = {}
-- Iterate all buffers
for _, bctx in ipairs(all_ctxs) do
-- Iterate all windows of a same buffer
for _, wctx in ipairs(bctx.contexts) do
window.clip_window_context(wctx, opts.direction)
-- Get all lines' context
local lines = window.get_lines_context(bctx.hbuf, wctx)
-- in the case of a direction, we want to treat the first or last line (according to the direction) differently
if opts.direction == hint.HintDirection.AFTER_CURSOR then
-- the first line is to be checked first
create_jump_targets_for_line(
bctx.hbuf,
wctx.hwin,
jump_targets,
indirect_jump_targets,
regex,
wctx.col_offset,
wctx.win_width,
wctx.cursor_pos,
{ cursor_col = wctx.cursor_pos[2], direction = opts.direction },
opts.hint_position,
lines[1]
)
for i = 2, #lines do
create_jump_targets_for_line(
bctx.hbuf,
wctx.hwin,
jump_targets,
indirect_jump_targets,
regex,
wctx.col_offset,
wctx.win_width,
wctx.cursor_pos,
nil,
opts.hint_position,
lines[i]
)
end
elseif opts.direction == hint.HintDirection.BEFORE_CURSOR then
-- the last line is to be checked last
for i = 1, #lines - 1 do
create_jump_targets_for_line(
bctx.hbuf,
wctx.hwin,
jump_targets,
indirect_jump_targets,
regex,
wctx.col_offset,
wctx.win_width,
wctx.cursor_pos,
nil,
opts.hint_position,
lines[i]
)
end
create_jump_targets_for_line(
bctx.hbuf,
wctx.hwin,
jump_targets,
indirect_jump_targets,
regex,
wctx.col_offset,
wctx.win_width,
wctx.cursor_pos,
{ cursor_col = wctx.cursor_pos[2], direction = opts.direction },
opts.hint_position,
lines[#lines]
)
else
for i = 1, #lines do
create_jump_targets_for_line(
bctx.hbuf,
wctx.hwin,
jump_targets,
indirect_jump_targets,
regex,
wctx.col_offset,
wctx.win_width,
wctx.cursor_pos,
nil,
opts.hint_position,
lines[i]
)
end
end
end
end
M.sort_indirect_jump_targets(indirect_jump_targets, opts)
return { jump_targets = jump_targets, indirect_jump_targets = indirect_jump_targets }
end
end
-- Jump target generator for regex applied only on the cursor line.
function M.jump_targets_for_current_line(regex)
return function(opts)
local context = window.get_window_context(false)[1].contexts[1]
local line_n = context.cursor_pos[1]
local line = vim.api.nvim_buf_get_lines(0, line_n - 1, line_n, false)
local jump_targets = {}
local indirect_jump_targets = {}
create_jump_targets_for_line(
0,
0,
jump_targets,
indirect_jump_targets,
regex,
context.col_offset,
context.win_width,
context.cursor_pos,
{ cursor_col = context.cursor_pos[2], direction = opts.direction },
opts.hint_position,
{ line_nr = line_n - 1, line = line[1] }
)
M.sort_indirect_jump_targets(indirect_jump_targets, opts)
return { jump_targets = jump_targets, indirect_jump_targets = indirect_jump_targets }
end
end
-- Apply a score function based on the Manhattan distance to indirect jump targets.
function M.sort_indirect_jump_targets(indirect_jump_targets, opts)
local score_comparison = nil
if opts.reverse_distribution then
score_comparison = function (a, b) return a.score > b.score end
else
score_comparison = function (a, b) return a.score < b.score end
end
table.sort(indirect_jump_targets, score_comparison)
end
-- Regex modes for the buffer-driven generator.
local function starts_with_uppercase(s)
if #s == 0 then
return false
end
local f = s:sub(1, vim.fn.byteidx(s, 1))
-- if its a space, we assume its not uppercase, even though Lua doesnt agree with us; I mean, Lua is horrible, who
-- would like to argue with that creature, right?
if f == ' ' then
return false
end
return f:upper() == f
end
-- Regex by searching a pattern.
function M.regex_by_searching(pat, plain_search)
if plain_search then
pat = vim.fn.escape(pat, '\\/.$^~[]')
end
local regex = vim.regex(pat)
return {
oneshot = false,
match = function(s)
return regex:match_str(s)
end
}
end
-- Wrapper over M.regex_by_searching to add support for case sensitivity.
function M.regex_by_case_searching(pat, plain_search, opts)
if plain_search then
pat = vim.fn.escape(pat, '\\/.$^~[]')
end
if vim.o.smartcase then
if not starts_with_uppercase(pat) then
pat = '\\c' .. pat
end
elseif opts.case_insensitive then
pat = '\\c' .. pat
end
local regex = vim.regex(pat)
return {
oneshot = false,
match = function(s)
return regex:match_str(s)
end
}
end
-- Word regex.
function M.regex_by_word_start()
return M.regex_by_searching('\\k\\+')
end
-- Line regex.
function M.by_line_start()
local c = vim.fn.winsaveview().leftcol
return {
oneshot = true,
match = function(s)
local l = vim.fn.strdisplaywidth(s)
if c > 0 and l == 0 then
return nil
end
return 0, 1
end
}
end
-- Line regex at cursor position.
function M.regex_by_vertical()
local position = vim.api.nvim_win_get_cursor(0)[2]
local regex = vim.regex(string.format("^.\\{0,%d\\}\\(.\\|$\\)", position))
return {
oneshot = true,
match = function(s)
return regex:match_str(s)
end
}
end
-- Line regex skipping finding the first non-whitespace character on each line.
function M.regex_by_line_start_skip_whitespace()
local regex = vim.regex("\\S")
return {
oneshot = true,
match = function(s)
return regex:match_str(s)
end
}
end
-- Anywhere regex.
function M.regex_by_anywhere()
return M.regex_by_searching('\\v(<.|^$)|(.>|^$)|(\\l)\\zs(\\u)|(_\\zs.)|(#\\zs.)')
end
return M