1
0
mirror of https://github.com/SpaceVim/SpaceVim.git synced 2025-02-04 08:40:05 +08:00
SpaceVim/bundle/jedi-vim/pythonx/jedi/test/completion/pep0484_generic_parameters.py
2022-10-23 15:41:52 +08:00

390 lines
8.4 KiB
Python

from typing import (
Callable,
Dict,
Generic,
Iterable,
List,
Mapping,
Optional,
Tuple,
Type,
TypeVar,
Union,
Sequence,
)
K = TypeVar('K')
T = TypeVar('T')
T_co = TypeVar('T_co', covariant=True)
V = TypeVar('V')
just_float = 42. # type: float
optional_float = 42. # type: Optional[float]
list_of_ints = [42] # type: List[int]
list_of_floats = [42.] # type: List[float]
list_of_optional_floats = [x or None for x in list_of_floats] # type: List[Optional[float]]
list_of_ints_and_strs = [42, 'abc'] # type: List[Union[int, str]]
# Test that simple parameters are handled
def list_t_to_list_t(the_list: List[T]) -> List[T]:
return the_list
x0 = list_t_to_list_t(list_of_ints)[0]
#? int()
x0
for a in list_t_to_list_t(list_of_ints):
#? int()
a
# Test that unions are handled
x2 = list_t_to_list_t(list_of_ints_and_strs)[0]
#? int() str()
x2
for z in list_t_to_list_t(list_of_ints_and_strs):
#? int() str()
z
list_of_int_type = [int] # type: List[Type[int]]
# Test that nested parameters are handled
def list_optional_t_to_list_t(the_list: List[Optional[T]]) -> List[T]:
return [x for x in the_list if x is not None]
for xa in list_optional_t_to_list_t(list_of_optional_floats):
#? float()
xa
# Under covariance rules this is strictly incorrect (because List is mutable,
# the function would be allowed to put `None`s into our List[float], which would
# be bad), however we don't expect jedi to enforce that.
for xa1 in list_optional_t_to_list_t(list_of_floats):
#? float()
xa1
def optional_t_to_list_t(x: Optional[T]) -> List[T]:
return [x] if x is not None else []
for xb in optional_t_to_list_t(optional_float):
#? float()
xb
for xb2 in optional_t_to_list_t(just_float):
#? float()
xb2
def optional_list_t_to_list_t(x: Optional[List[T]]) -> List[T]:
return x if x is not None else []
optional_list_float = None # type: Optional[List[float]]
for xc in optional_list_t_to_list_t(optional_list_float):
#? float()
xc
for xc2 in optional_list_t_to_list_t(list_of_floats):
#? float()
xc2
def list_type_t_to_list_t(the_list: List[Type[T]]) -> List[T]:
return [x() for x in the_list]
x1 = list_type_t_to_list_t(list_of_int_type)[0]
#? int()
x1
for b in list_type_t_to_list_t(list_of_int_type):
#? int()
b
# Test construction of nested generic tuple return parameters
def list_t_to_list_tuple_t(the_list: List[T]) -> List[Tuple[T]]:
return [(x,) for x in the_list]
x1t = list_t_to_list_tuple_t(list_of_ints)[0][0]
#? int()
x1t
for c1 in list_t_to_list_tuple_t(list_of_ints):
#? int()
c1[0]
for c2, in list_t_to_list_tuple_t(list_of_ints):
#? int()
c2
# Test handling of nested tuple input parameters
def list_tuple_t_to_tuple_list_t(the_list: List[Tuple[T]]) -> Tuple[List[T], ...]:
return tuple(list(x) for x in the_list)
list_of_int_tuples = [(x,) for x in list_of_ints] # type: List[Tuple[int]]
for b in list_tuple_t_to_tuple_list_t(list_of_int_tuples):
#? int()
b[0]
def list_tuple_t_elipsis_to_tuple_list_t(the_list: List[Tuple[T, ...]]) -> Tuple[List[T], ...]:
return tuple(list(x) for x in the_list)
list_of_int_tuple_elipsis = [tuple(list_of_ints)] # type: List[Tuple[int, ...]]
for b in list_tuple_t_elipsis_to_tuple_list_t(list_of_int_tuple_elipsis):
#? int()
b[0]
# Test handling of nested callables
def foo(x: int) -> int:
return x
list_of_funcs = [foo] # type: List[Callable[[int], int]]
def list_func_t_to_list_func_type_t(the_list: List[Callable[[T], T]]) -> List[Callable[[Type[T]], T]]:
def adapt(func: Callable[[T], T]) -> Callable[[Type[T]], T]:
def wrapper(typ: Type[T]) -> T:
return func(typ())
return wrapper
return [adapt(x) for x in the_list]
for b in list_func_t_to_list_func_type_t(list_of_funcs):
#? int()
b(int)
def bar(*a, **k) -> int:
return len(a) + len(k)
list_of_funcs_2 = [bar] # type: List[Callable[..., int]]
def list_func_t_passthrough(the_list: List[Callable[..., T]]) -> List[Callable[..., T]]:
return the_list
for b in list_func_t_passthrough(list_of_funcs_2):
#? int()
b(None, x="x")
mapping_int_str = {42: 'a'} # type: Dict[int, str]
# Test that mappings (that have more than one parameter) are handled
def invert_mapping(mapping: Mapping[K, V]) -> Mapping[V, K]:
return {v: k for k, v in mapping.items()}
#? int()
invert_mapping(mapping_int_str)['a']
# Test that the right type is chosen when a mapping is passed to something with
# only a single parameter. This checks that our inheritance checking picks the
# right thing.
def first(iterable: Iterable[T]) -> T:
return next(iter(iterable))
#? int()
first(mapping_int_str)
# Test inference of str as an iterable of str.
#? str()
first("abc")
some_str = NotImplemented # type: str
#? str()
first(some_str)
annotated = [len] # type: List[ Callable[[Sequence[float]], int] ]
#? int()
first(annotated)()
# Test that the right type is chosen when a partially realised mapping is expected
def values(mapping: Mapping[int, T]) -> List[T]:
return list(mapping.values())
#? str()
values(mapping_int_str)[0]
x2 = values(mapping_int_str)[0]
#? str()
x2
for b in values(mapping_int_str):
#? str()
b
#
# Tests that user-defined generic types are handled
#
list_ints = [42] # type: List[int]
class CustomGeneric(Generic[T_co]):
def __init__(self, val: T_co) -> None:
self.val = val
# Test extraction of type from a custom generic type
def custom(x: CustomGeneric[T]) -> T:
return x.val
custom_instance = CustomGeneric(42) # type: CustomGeneric[int]
#? int()
custom(custom_instance)
x3 = custom(custom_instance)
#? int()
x3
# Test construction of a custom generic type
def wrap_custom(iterable: Iterable[T]) -> List[CustomGeneric[T]]:
return [CustomGeneric(x) for x in iterable]
#? int()
wrap_custom(list_ints)[0].val
x4 = wrap_custom(list_ints)[0]
#? int()
x4.val
for x5 in wrap_custom(list_ints):
#? int()
x5.val
# Test extraction of type from a nested custom generic type
list_custom_instances = [CustomGeneric(42)] # type: List[CustomGeneric[int]]
def unwrap_custom(iterable: Iterable[CustomGeneric[T]]) -> List[T]:
return [x.val for x in iterable]
#? int()
unwrap_custom(list_custom_instances)[0]
x6 = unwrap_custom(list_custom_instances)[0]
#? int()
x6
for x7 in unwrap_custom(list_custom_instances):
#? int()
x7
for xc in unwrap_custom([CustomGeneric(s) for s in 'abc']):
#? str()
xc
for xg in unwrap_custom(CustomGeneric(s) for s in 'abc'):
#? str()
xg
# Test extraction of type from type parameer nested within a custom generic type
custom_instance_list_int = CustomGeneric([42]) # type: CustomGeneric[List[int]]
def unwrap_custom2(instance: CustomGeneric[Iterable[T]]) -> List[T]:
return list(instance.val)
#? int()
unwrap_custom2(custom_instance_list_int)[0]
x8 = unwrap_custom2(custom_instance_list_int)[0]
#? int()
x8
for x9 in unwrap_custom2(custom_instance_list_int):
#? int()
x9
# Test that classes which have generic parents but are not generic themselves
# are still inferred correctly.
class Specialised(Mapping[int, str]):
pass
specialised_instance = NotImplemented # type: Specialised
#? int()
first(specialised_instance)
#? str()
values(specialised_instance)[0]
# Test that classes which have generic ancestry but neither they nor their
# parents are not generic are still inferred correctly.
class ChildOfSpecialised(Specialised):
pass
child_of_specialised_instance = NotImplemented # type: ChildOfSpecialised
#? int()
first(child_of_specialised_instance)
#? str()
values(child_of_specialised_instance)[0]
# Test that unbound generics are inferred as much as possible
class CustomPartialGeneric1(Mapping[str, T]):
pass
custom_partial1_instance = NotImplemented # type: CustomPartialGeneric1[int]
#? str()
first(custom_partial1_instance)
custom_partial1_unbound_instance = NotImplemented # type: CustomPartialGeneric1
#? str()
first(custom_partial1_unbound_instance)
class CustomPartialGeneric2(Mapping[T, str]):
pass
custom_partial2_instance = NotImplemented # type: CustomPartialGeneric2[int]
#? int()
first(custom_partial2_instance)
#? str()
values(custom_partial2_instance)[0]
custom_partial2_unbound_instance = NotImplemented # type: CustomPartialGeneric2
#? []
first(custom_partial2_unbound_instance)
#? str()
values(custom_partial2_unbound_instance)[0]