from PIL import Image from torch.utils.tensorboard import SummaryWriter from torchvision import transforms writer = SummaryWriter("logs") img = Image.open(r"images/7759525_1363d24e88.jpg") # TeTensor的使用 trans_totensor = transforms.ToTensor() img_tensor = trans_totensor(img) writer.add_image("ToTensor", img_tensor) # Normalize的使用 print(img_tensor[0][0][0]) trans_norm = transforms.Normalize([1, 3, 5], [3, 2, 1]) img_norm = trans_norm(img_tensor) print(img_norm[0][0][0]) writer.add_image("Normalize", img_norm,2) # Resize的使用 print(img.size) trans_resize = transforms.Resize((512, 512)) # img PIL -> resize -> img_resize PIL img_resize = trans_resize(img) # 返回的是PIL # img_resize PIL -> ToTensor -> img_resize Tensor img_resize = trans_totensor(img_resize) # PIL转换为Tensor writer.add_image("Resize", img_resize, 0) # Compose的使用 compose = ToTensor + Normalize trans_resize_2 = transforms.Resize(512) # transforms.Compose([trans_resize_2, trans_totensor])是一个类,可以直接调用 # 用于将多个transforms组合起来使用 达到 ToTensor + Normalize 的效果 trans_compose = transforms.Compose([trans_resize_2, trans_totensor]) img_resize_2 = trans_compose(img) writer.add_image("Raszie", img_resize_2, 1) # RandomCrop的使用 trans_random = transforms.RandomCrop(256, 128) trans_compose2 = transforms.Compose([trans_random, trans_totensor]) for i in range(10): img_crop = trans_compose2(img) writer.add_image("RandomCrop", img_crop, i) writer.close()